scholarly journals Peroxiredoxin 6: A Bifunctional Enzyme with Glutathione Peroxidase and Phospholipase A2 Activities

2011 ◽  
Vol 15 (3) ◽  
pp. 831-844 ◽  
Author(s):  
Aron B. Fisher
2019 ◽  
Vol 63 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Lu-Lu Wang ◽  
Shi-Ying Lu ◽  
Pan Hu ◽  
Bao-Quan Fu ◽  
Yan-Song Li ◽  
...  

Abstract Introduction: Peroxiredoxin 6 (Prdx6) is a bifunctional protein with glutathione peroxidase activity and phospholipase A2 activity. Previous studies have shown a significant positive correlation between the intracellular survival ability of Brucella and Prdx6. Here, the Prdx6 enzyme with a single activity was constructed to facilitate study of the relationship between the single function of Prdx6 and Brucella infection. Material and Methods: The target open reading frame (ORF) DNAs of Prdx6 with a single active centre were prepared using gene splicing by overlap extension PCR (SOE-PCR), and the recombinant eukaryotic expression plasmids inserted by Prdx6 with the single activity centre were constructed and transfected into murine Raw264.7 macrophages. The glutathione peroxidase activity and phospholipase A2 activity of the constructed Prdx6 were examined. Results: The core centres (Ser32 and Cys47) of Prdx6 were successfully mutated by changing the 94th nucleotide from T to G and the 140th nucleotide from G to C in the two enzyme activity cores, respectively. The constructed recombinant plasmids of Prdx6 with the single active centre were transfected into murine macrophages showing the expected single functional enzyme activity, which MJ33 or mercaptosuccinate inhibitors were able to inhibit. Conclusion: The constructed mutants of Prdx6 with the single activity cores will be a benefit to further study of the biological function of Prdx6 with different enzyme activity.


2021 ◽  
Author(s):  
Wen-ying Yang ◽  
Xiang Meng ◽  
Yue-rong Wang ◽  
Qing-qing Wang ◽  
Xin He ◽  
...  

Abstract Purpose: Periodontitis is a progressive and inflammatory oral disease and results in the damage of the supporting tissues of teeth. Peroxiredoxin 6 (PRDX6) is an antioxidant enzyme identified as a redox balance regulator. This study aimed to investigate whether PRDX6 could protect human gingival fibroblasts (HGFs) from lipopolysaccharide (LPS) induced inflammation and its mechanisms.Methods: Both inflamed and non-inflamed human gingival tissues were collected to assess the expression of PRDX6 and NRF2 by Immunohistochemistry and Western blotting. Furthermore, HGFs were stimulated with LPS, MJ33 (PRDX6 phospholipase A2 inhibitor), or ML385 (NRF2 inhibitor). The expression levels of inflammatory cytokines were measured by RT-qPCR and ELISA, and reactive oxygen species (ROS) were detected using DCFH-DA.Results: PRDX6 was downregulated in inflamed gingival tissues. In HGFs, LPS induced inflammatory cytokines and ROS was upregulated in PRDX6 knockdown cells. Furthermore, co-treatment with MJ33 alleviated LPS-induced inflammatory cytokines and ROS while inhibiting NRF2 upregulated those in HGFs.Conclusion: Therefore, this study provided a new mechanistic insight that PRDX6, regulated by the NRF2 signaling, alleviates LPS-induced periodontitis in human gingival fibroblasts.


2009 ◽  
Vol 419 (3) ◽  
pp. 669-679 ◽  
Author(s):  
Yongzheng Wu ◽  
Sheldon I. Feinstein ◽  
Yefim Manevich ◽  
Ibrul Chowdhury ◽  
Jhang Ho Pak ◽  
...  

Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA2 (phospholipase A2) [aiPLA2 (acidic calcium-independent PLA2)] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA2 activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to ∼75% increase in aiPLA2 activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine o-phosphoserine antibodies. in vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA2 activity. The increased activity was calcium-independent and was abolished by the aiPLA2 inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA2 activity.


Sign in / Sign up

Export Citation Format

Share Document