scholarly journals Phospholipase A2 of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis

2011 ◽  
Vol 18 (10) ◽  
pp. 1573-1583 ◽  
Author(s):  
S Y Kim ◽  
E Chun ◽  
K-Y Lee
1997 ◽  
Vol 185 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Andrew D. Badley ◽  
David Dockrell ◽  
Margaret Simpson ◽  
Ron Schut ◽  
David H. Lynch ◽  
...  

Apoptosis of bystander uninfected CD4+ T lymphocytes by neighboring HIV-infected cells is observed in cell culture and in lymphoid tissue of HIV-infected individuals. This study addresses whether antigen-presenting cells such as human macrophages mediate apoptosis of CD4+ T cells from HIV-infected individuals. Uninfected human macrophages, and to a larger degree, HIV-infected macrophages mediate apoptosis of T cells from HIV-infected, but not from uninfected control individuals. This macrophage-dependent killing targets CD4+, but not CD8+ T lymphocytes from HIV-infected individuals, and direct contact between macrophages and lymphocytes is required. Additional analyses indicated that the apoptosis-inducing ligands, FasL and tumor necrosis factor (TNF), mediate this macrophage-induced apoptosis of CD4+ T cells. These results support a role for macrophage-associated FasL and TNF in the selective depletion of CD4+ T cells in HIV-infected individuals.


2004 ◽  
Vol 15 (7) ◽  
pp. 3266-3284 ◽  
Author(s):  
Romaine Ingrid Fernando ◽  
Jay Wimalasena

Estrogens such as 17-β estradiol (E2) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E2 abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-α, H2O2, and serum starvation in causing apoptosis. Furthermore, the ability of E2 to prevent tumor necrosis factor-α-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90RSK1 and Akt, was not phosphorylated in response to E2 in vitro. E2 treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90RSK1 to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90RSK1 activation, E2 also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E2. Dominant negative Ras blocked E2-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E2-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E2-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E2 prevents apoptosis.


Sign in / Sign up

Export Citation Format

Share Document