Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms

2018 ◽  
Vol 8 (5) ◽  
pp. 268-275 ◽  
Author(s):  
Michael Todd Jurkiewicz ◽  
Adrian Philip Crawley ◽  
David John Mikulis
2021 ◽  
Vol 11 (9) ◽  
pp. 1248
Author(s):  
Martina Gandola ◽  
Laura Zapparoli ◽  
Gianluca Saetta ◽  
Carlo Reverberi ◽  
Gerardo Salvato ◽  
...  

Body integrity dysphoria (BID), a long-lasting desire for the amputation of physically healthy limbs, is associated with reduced fMRI resting-state functional connectivity of somatosensory cortices. Here, we used fMRI to evaluate whether these findings could be replicated and expanded using a task-based paradigm. We measured brain activations during somatosensory stimulation and motor tasks for each of the four limbs in ten individuals with a life-long desire for the amputation of the left leg and fourteen controls. For the left leg, BID individuals had reduced brain activation in the right superior parietal lobule for somatosensory stimulation and in the right paracentral lobule for the motor task, areas where we previously found reduced resting-state functional connectivity. In addition, for somatosensory stimulation only, we found a robust reduction in activation of somatosensory areas SII bilaterally, mostly regardless of the stimulated body part. Areas SII were regions of convergent activations for signals from all four limbs in controls to a significantly greater extent than in subjects with BID. We conclude that BID is associated with altered integration of somatosensory and, to a lesser extent, motor signals, involving limb-specific cortical maps and brain regions where the first integration of body-related signals is achieved through convergence.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2021 ◽  
pp. 100345
Author(s):  
Zahra Rezaei ◽  
Zahra Jafari ◽  
Navvab Afrashteh ◽  
Reza Torabi ◽  
Surjeet Singh ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tiffany Bell ◽  
Akashroop Khaira ◽  
Mehak Stokoe ◽  
Megan Webb ◽  
Melanie Noel ◽  
...  

Abstract Background Migraine affects roughly 10% of youth aged 5–15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. Methods Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7–15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. Results We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. Conclusions We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.


2021 ◽  
Vol 138 ◽  
pp. 83-88
Author(s):  
Shiral S. Gangadin ◽  
Wiepke Cahn ◽  
Thomas W. Scheewe ◽  
Hilleke E. Hulshoff Pol ◽  
Matthijs G. Bossong

Sign in / Sign up

Export Citation Format

Share Document