Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to In Vivo Proofs of Concept

2018 ◽  
Vol 33 (8) ◽  
pp. 316-329 ◽  
Author(s):  
Sandrine Huclier-Markai ◽  
Cyrille Alliot ◽  
Rabha Kerdjoudj ◽  
Marie Mougin-Degraef ◽  
Nicolas Chouin ◽  
...  
1982 ◽  
Vol 21 (03) ◽  
pp. 85-91 ◽  
Author(s):  
R. Poppitz

Um die Strahlenexposition und das Strahlenrisiko für die Bevölkerung durch die nuklearmedizinische Diagnostik in Bulgarien zu ermitteln, wurde eine Erhebung für das Jahr 1980 über die Arten und Anzahl der Applikationen von Radiopharmaka, über die verwendeten Aktivitäten und über die Geschlechts- und Altersverteilung der untersuchten Patienten durchgeführt. Die Gesamtzahl diagnostischer in vivo Applikationen betrug 116418 (davon 40,5% bei Männern und 59,5% bei Frauen), d.h. 13,1 Applikationen per 1000 Einwohner. Die applizierte Gesamtaktivität aller 44 verwendeter Radiopharmaka betrug ca. 2,1 TBq (56 Ci). Die Geschlechts- und Altersverteilung der untersuchten Patienten war ähnlich jener in anderen Ländern: nur 17,4% aller Patienten waren im reproduktionsfähigen Alter, 52,7% waren über 45 Jahre alt. Im Vergleich zu anderen entwickelten Ländern war in Bulgarien im Jahr 1980 der Anteil der 131J-Jodid-Untersuchungen verhältnismäßig hoch.


2001 ◽  
Vol 40 (03) ◽  
pp. 59-70 ◽  
Author(s):  
W. Becker ◽  
J. Meiler

SummaryFever of unknown origin (FUO) in immunocompetent and non neutropenic patients is defined as recurrent fever of 38,3° C or greater, lasting 2-3 weeks or longer, and undiagnosed after 1 week of appropriate evaluation. The underlying diseases of FUO are numerous and infection accounts for only 20-40% of them. The majority of FUO-patients have autoimmunity and collagen vascular disease and neoplasm, which are responsible for about 50-60% of all cases. In this respect FOU in its classical definition is clearly separated from postoperative and neutropenic fever where inflammation and infection are more common. Although methods that use in-vitro or in-vivo labeled white blood cells (WBCs) have a high diagnostic accuracy in the detection and exclusion of granulocytic pathology, they are only of limited value in FUO-patients in establishing the final diagnosis due to the low prevalence of purulent processes in this collective. WBCs are more suited in evaluation of the focus in occult sepsis. Ga-67 citrate is the only commercially available gamma emitter which images acute, chronic, granulomatous and autoimmune inflammation and also various malignant diseases. Therefore Ga-67 citrate is currently considered to be the tracer of choice in the diagnostic work-up of FUO. The number of Ga-67-scans contributing to the final diagnosis was found to be higher outside Germany than it has been reported for labeled WBCs. F-l 8-2’-deoxy-2-fluoro-D-glucose (FDG) has been used extensively for tumor imaging with PET. Inflammatory processes accumulate the tracer by similar mechanisms. First results of FDG imaging demonstrated, that FDG may be superior to other nuclear medicine imaging modalities which may be explained by the preferable tracer kinetics of the small F-l 8-FDG molecule and by a better spatial resolution of coincidence imaging in comparison to a conventional gamma camera.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 1087-1120 ◽  
Author(s):  
Nkemakonam C. Okoye ◽  
Jakob E. Baumeister ◽  
Firouzeh Najafi Khosroshahi ◽  
Heather M. Hennkens ◽  
Silvia S. Jurisson

Abstract Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.


2005 ◽  
Vol 48 (spe2) ◽  
pp. 29-35 ◽  
Author(s):  
Carla Roberta Dias ◽  
Barbara Marczewski ◽  
Vanessa Moraes ◽  
Marycel Figols de Barboza ◽  
João Alberto Osso Junior

Monoclonal antibodies (Mabs) have been useful for immunoscintigraphic applications in clinical diagnosis since they were introduced in the practice of nuclear medicine. The ior egf/r3 (Centis, Cuba) is a murine monoclonal antibody against epidermal growth factor receptor (EGF-R) and has been widely used in the radioimmunodiagnosis of tumors of epithelial origin. Labeled with 99mTc, its main application in Nuclear Medicine is the follow up, detection and evaluation of tumor recurrences. The objective of this work is to describe the preparation of a lyophilized formulation (kit) for radiolabeling the Mab ior egf/r3 with 99mTc for immunoscintigraphic applications. Radiolabeling efficiency, effects on immunoreactivity, image studies and stability of the formulation are reported. The study demonstrated that the kit formulation can be labeled with 99mTc at high yields and can be used to visualize in vivo human tumors of epithelial origin by immunoscintigraphy studies.


Author(s):  
Adil Al-Nahhas ◽  
Imene Zerizer

The application of nuclear medicine techniques in the diagnosis and management of rheumatological conditions relies on its ability to detect physiological and pathological changes in vivo, usually at an earlier stage compared to structural changes visualized on conventional imaging. These techniques are based on the in-vivo administration of a gamma-emitting radionuclide whose distribution can be monitored externally using a gamma camera. To guide a radionuclide to the area of interest, it is usually bound to a chemical label to form a 'radiopharmaceutical'. There are hundreds of radiopharmaceuticals in clinical use with different 'homing' mechanisms, such as 99 mTc HDP for bone scan and 99 mTc MAA for lung scan. Comparing pre- and posttherapy scans can aid in monitoring response to treatment. More recently, positron emission tomography combined with simultaneous computed tomography (PET/CT) has been introduced into clinical practice. This technique provides superb spatial resolution and anatomical localization compared to gamma-camera imaging. The most widely used PET radiopharmaceutical, flurodeoxyglucose (18F-FDG), is a fluorinated glucose analogue, which can detect hypermetabolism and has therefore been used in imaging and monitoring response to treatment of a variety of cancers as well as inflammatory conditions such as vasculitis, myopathy, and arthritides. Other PET radiopharmaceuticals targeting inflammation and activated macrophages are becoming available and could open new frontiers in PET imaging in rheumatology. Nuclear medicine procedures can also be used therapeutically. Beta-emitting radiopharmaceuticals, such as yttrium-90, invoke localized tissue damage at the site of injection and can be used in the treatment of synovitis.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1955
Author(s):  
Siri Paulo ◽  
Mafalda Laranjo ◽  
Anabela Paula ◽  
Ana Margarida Abrantes ◽  
João Martins ◽  
...  

Bisphosphonate-associated osteonecrosis of the jaw (BRONJ), a post-surgical non-healing wound condition, is one of the most common side effects in patients treated with nitrogen-containing bisphosphonates. Its physiopathology has been related with suppression of bone turnover, of soft tissue healing and infection. Biphasic calcium phosphates (BCP) are used as a drug delivery vehicle and as a bone substitute in surgical wounds. Due to their capacity to adsorb zoledronate, it was hypothesized these compounds might have a protective effect on the soft tissues in BRONJ wounds. To address this hypothesis, a reproducible in vivo model of BRONJ in Wistar rats was used. This model directly relates chronic bisphosphonate administration with the development of osteonecrosis of the jaw after tooth extraction. BCP granules were placed in the alveolus immediately after tooth extraction in the test group. The animals were evaluated through nuclear medicine, radiology, macroscopic observation, and histologic analysis. Encouragingly, calcium phosphate ceramics were able to limit zoledronate toxicity in vivo and to favor healing, which was evidenced by medical imaging (nuclear medicine and radiology), macroscopically, and through histology. The studied therapeutic option presented itself as a potential solution to prevent the development of maxillary osteonecrosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Roland Haubner ◽  
Simone Maschauer ◽  
Olaf Prante

Noninvasive determination of integrin expression has become an interesting approach in nuclear medicine. Since the discovery of the first18F-labeled cyclic RGD peptide as radiotracer for imaging integrinαvβ3expression in vivo, there have been carried out enormous efforts to develop RGD peptides for PET imaging. Moreover, in recent years, additional integrins, includingα5β1andαvβ6, came into the focus of pharmaceutical radiochemistry. This review will discuss the tracers already evaluated in clinical trials and summarize the preliminary outcome. It will also give an overview on recent developments to further optimize the first-generation compounds such as [18F]Galacto-RGD. This includes recently developed18F-labeling strategies and also new approaches in68Ga-complex chemistry. Furthermore, the approaches to develop radiopharmaceuticals targeting integrinα5β1andαvβ6will be summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document