Analyzing the LncRNA, miRNA, and mRNA Regulatory Network in Prostate Cancer with Bioinformatics Software

2018 ◽  
Vol 25 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Jin-Hua He ◽  
Ze-Ping Han ◽  
Mao-Xian Zou ◽  
Li Wang ◽  
Yu Bing Lv ◽  
...  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhou Du ◽  
Tong Sun ◽  
Ezgi Hacisuleyman ◽  
Teng Fei ◽  
Xiaodong Wang ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244480
Author(s):  
Xinghuo Ye ◽  
Zhihong Yang ◽  
Yeqin Jiang ◽  
Lan Yu ◽  
Rongkai Guo ◽  
...  

Identification of the target genes of microRNAs (miRNAs), trans-acting small interfering RNAs (ta-siRNAs), and small interfering RNAs (siRNAs) is an important step for understanding their regulatory roles in plants. In recent years, many bioinformatics software packages based on small RNA (sRNA) high-throughput sequencing (HTS) and degradome sequencing data analysis have provided strong technical support for large-scale mining of sRNA-target pairs. However, sRNA-target regulation is achieved using a complex network of interactions since one transcript might be co-regulated by multiple sRNAs and one sRNA may also affect multiple targets. Currently used mining software can realize the mining of multiple unknown targets using known sRNA, but it cannot rule out the possibility of co-regulation of the same target by other unknown sRNAs. Hence, the obtained regulatory network may be incomplete. We have developed a new mining software, sRNATargetDigger, that includes two function modules, “Forward Digger” and “Reverse Digger”, which can identify regulatory sRNA-target pairs bidirectionally. Moreover, it has the ability to identify unknown sRNAs co-regulating the same target, in order to obtain a more authentic and reliable sRNA-target regulatory network. Upon re-examination of the published sRNA-target pairs in Arabidopsis thaliana, sRNATargetDigger found 170 novel co-regulatory sRNA-target pairs. This software can be downloaded from http://www.bioinfolab.cn/sRNATD.html.


2019 ◽  
Vol 20 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Daniel Moore ◽  
Ricardo de Matos Simoes ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib

Background: Cancer is a complex disease with a lucid etiology and in understanding the causation, we need to appreciate this complexity. Objective: Here we are aiming to gain insights into the genetic associations of prostate cancer through a network-based systems approach using the BC3Net algorithm. Methods: Specifically, we infer a prostate cancer Gene Regulatory Network (GRN) from a large-scale gene expression data set of 333 patient RNA-seq profiles obtained from The Cancer Genome Atlas (TCGA) database. Results: We analyze the functional components of the inferred network by extracting subnetworks based on biological process information and interpret the role of known cancer genes within each process. Furthermore, we investigate the local landscape of prostate cancer genes and discuss pathological associations that may be relevant in the development of new targeted cancer therapies. Conclusion: Our network-based analysis provides a practical systems biology approach to reveal the collective gene-interactions of prostate cancer. This allows a close interpretation of biological activity in terms of the hallmarks of cancer.


2021 ◽  
Author(s):  
Mei Yang ◽  
Hui Liu ◽  
Guo Ping Qiu ◽  
Fei Gao

Abstract Background: Circulating tumor cells (CTCs)are the basis of cancer metastasis. Till now, the role of different subtypes of CTCs in metastasis is unclear. Methods: We used the CanpatrolTM technique to isolate CTCs from 102 prostate cancer (PCa) patients. The EMT markers of CTCs were detected by FISH and classified CTCs into Epethial (E-CTCs), Mesenchymal (M-CTCs) and Mesenchymal/Epethial-CTCs (M/E-CTCs). Further, the potential EMT related molecules regulators were predicted by bioinformatics software, and SP1 was identified as the key EMT regulator. Then overexpress SP1 of PCa cells to verify the effect of SP1 on the EMT regulation and PCa metastasis. Results: The count of Total-CTCs, E-CTCs, and M/E-CTCs in metastatic PCa was significantly higher than that in local PCa. Although M-CTCs was not significantly different between local and metastatic PCa, the ratio of M-CTCs/Total-CTCs in metastatic PCa was markedly lower than that in local PCa. We found that Total-CTCs is an independent risk factor for PCa metastasis. Overexpression of SP1 initiated EMT of PCa cells and enhanced the invasion in vitro. Injecting overexpression SP1 PCa cells via tail vein, generating M-CTCs in vivo, we found the ability of M-CTCs to form lung metastasis was significantly inhibited compared with that of the control PCa-CTCs. Conclusion: Our study suggested Total-CTCs >14 predict PCa metastasis. M/E-CTCs might facilitate to PCa metastasis; however, M-CTCs might not. SP1 is an EMT regulator, which has the potential role of regulating the EMT of CTCs, thus changing the proportion of subtypes of CTCs. It is a potential therapeutic target.(Trial registration: Chinese Clinical Trial Registry. Registered 30 JUNE 2020, http://www.chictr.org.cn/registry.aspx)


2019 ◽  
Vol 190 ◽  
pp. 33-40 ◽  
Author(s):  
Jiali Guo ◽  
Ziyan Huang ◽  
Xingyong Zhu ◽  
Lin Jiang ◽  
Wei Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document