Cas4–Cas1 Is a Protospacer Adjacent Motif–Processing Factor Mediating Half-Site Spacer Integration During CRISPR Adaptation

2021 ◽  
Vol 4 (4) ◽  
pp. 536-548
Author(s):  
Sebastian N. Kieper ◽  
Cristóbal Almendros ◽  
Anna C. Haagsma ◽  
Arjan Barendregt ◽  
Albert J.R. Heck ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuu Asano ◽  
Kensuke Yamashita ◽  
Aoi Hasegawa ◽  
Takanori Ogasawara ◽  
Hoshie Iriki ◽  
...  

AbstractThe powerful genome editing tool Streptococcus pyogenes Cas9 (SpCas9) requires the trinucleotide NGG as a protospacer adjacent motif (PAM). The PAM requirement is limitation for precise genome editing such as single amino-acid substitutions and knock-ins at specific genomic loci since it occurs in narrow editing window. Recently, SpCas9 variants (i.e., xCas9 3.7, SpCas9-NG, and SpRY) were developed that recognise the NG dinucleotide or almost any other PAM sequences in human cell lines. In this study, we evaluated these variants in Dictyostelium discoideum. In the context of targeted mutagenesis at an NG PAM site, we found that SpCas9-NG and SpRY were more efficient than xCas9 3.7. In the context of NA, NT, NG, and NC PAM sites, the editing efficiency of SpRY was approximately 60% at NR (R = A and G) but less than 22% at NY (Y = T and C). We successfully used SpRY to generate knock-ins at specific gene loci using donor DNA flanked by 60 bp homology arms. In addition, we achieved point mutations with efficiencies as high as 97.7%. This work provides tools that will significantly expand the gene loci that can be targeted for knock-out, knock-in, and precise point mutation in D. discoideum.


2021 ◽  
pp. 129925
Author(s):  
Yanjie Li ◽  
Jiabin Xu ◽  
Xueping Zhao ◽  
Hongmei He ◽  
Changpeng Zhang ◽  
...  

2002 ◽  
Vol 16 (7) ◽  
pp. 1696-1710 ◽  
Author(s):  
Jean-Louis Carsol ◽  
Sébastien Gingras ◽  
Jacques Simard

Abstract The signal transducer and activator of transcription 5 (Stat5) has been shown to cooperate with some nuclear receptors. However, an interaction has never been demonstrated with the androgen receptor (AR). Given that the PRL-inducible protein/gross cystic disease fluid-15 (PIP/GCDFP-15) is both a PRL-controlled and an androgen-controlled protein, we used its promoter region to investigate the potential interaction between Stat5 and androgen receptor. Dihydrotestosterone or PRL alone slightly modulated or did not modulate the luciferase activity of all reporter gene constructs. In contrast, a maximal increase was observed using the −1477+42 reporter gene construct after exposure to both dihydrotestosterone and PRL. The requirement of half-site androgen-responsive elements and two consensus Stat5-binding elements, Stat5#1 and Stat5#2, was determined by site-directed mutagenesis. Activated Stat5B binds with a higher affinity to Stat5#2 than to Stat5#1. Stat5AΔ749 and Stat5BΔ754 mutants demonstrated that the Stat5 trans-activation domain is involved in the hormonal cooperation. The cooperation depends on the PRL-induced phosphorylation on Tyr694 in Stat5A and Tyr699 in Stat5B, as demonstrated using the Stat5AY694F and Stat5BY699F proteins. The use of AR Q798E, C619Y, and C784Y mutants showed that trans-activation, DNA-binding, and ligand-binding domains of AR are essential. Our study thus suggests a functional cooperation between AR and Stat5.


1993 ◽  
Vol 13 (4) ◽  
pp. 2411-2419
Author(s):  
K P Mann ◽  
E A Weiss ◽  
J R Nevins

The recognition and processing of a pre-mRNA to create a poly(A) addition site, a necessary step in mRNA biogenesis, can also be a regulatory event in instances in which the frequency of use of a poly(A) site varies. One such case is found during the course of an adenovirus infection. Five poly(A) sites are utilized within the major late transcription unit to produce more than 20 distinct mRNAs during the late phase of infection. The proximal half of the major late transcription unit is also expressed during the early phase of a viral infection. During this early phase of expression, the L1 poly(A) site is used three times more frequently than the L3 poly(A) site. In contrast, the L3 site is used three times more frequently than the L1 site during the late phase of infection. Recent experiments have suggested that the recognition of the poly(A) site GU-rich downstream element by the CF1 processing factor may be a rate-determining step in poly(A) site selection. We demonstrate that the interaction of CF1 with the L1 poly(A) site is less stable than the interaction of CF1 with the L3 poly(A) site. We also find that there is a substantial decrease in the level of CF1 activity when an adenovirus infection proceeds to the late phase. We suggest that this reduction in CF1 activity, coupled with the relative instability of the interaction with the L1 poly(A) site, contributes to the reduced use of the L1 poly(A) site during the late stage of an adenovirus infection.


1997 ◽  
Vol 2 (5) ◽  
pp. 315-327 ◽  
Author(s):  
Shiho Osada ◽  
Toshiro Tsukamoto ◽  
Masaki Takiguchi ◽  
Masataka Mori ◽  
Takashi Osumi

Genetics ◽  
1989 ◽  
Vol 121 (1) ◽  
pp. 5-12
Author(s):  
N Benson ◽  
P Youderian

Abstract By assaying the binding of wild-type Cro to a set of 40 mutant lambda operators in vivo, we have determined that the 14 outermost base pairs of the 17 base pair, consensus lambda operator are critical for Cro binding. Cro protein recognizes 4 base pairs in a lambda operator half-site in different ways than cI repressor. The sequence determinants of Cro binding at these critical positions in vivo are nearly perfectly consistent with the model proposed by W. F. ANDERSON, D. H. OHLENDORF, Y. TAKEDA and B. W. MATTHEWS and modified by Y. TAKEDA, A. SARAI and V. M. RIVERA for the specific interactions between Cro and its operator, and explain the relative order of affinities of the six natural lambda operators for Cro. Our data call into question the idea that lambda repressor and Cro protein recognize the consensus lambda operator by nearly identical patterns of specific interactions.


Sign in / Sign up

Export Citation Format

Share Document