scholarly journals Simultaneous Removal of Nitrate and Natural Organic Matter from Drinking Water Using a Hybrid Heterotrophic/Autotrophic/Biological Activated Carbon Bioreactor

2012 ◽  
Vol 29 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Reza Saeedi ◽  
Kazem Naddafi ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Simin Nasseri ◽  
...  
Author(s):  
Malin Ullberg ◽  
Elin Lavonen ◽  
Stephan J. Köhler ◽  
Oksana Golovko ◽  
Karin Wiberg

Conventional drinking water treatment is inefficient in removing a large fraction of known organic micropollutants (OMPs). Ozonation in combination with granular activated carbon is a promising approach for addressing this issue.


2009 ◽  
Vol 60 (6) ◽  
pp. 1515-1523 ◽  
Author(s):  
J. Y. Tian ◽  
Z. L. Chen ◽  
H. Liang ◽  
X. Li ◽  
Z. Z. Wang ◽  
...  

Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 ∼ 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.


2018 ◽  
Vol 4 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Nashita Moona ◽  
Kathleen R. Murphy ◽  
Mia Bondelind ◽  
Olof Bergstedt ◽  
Thomas J. R. Pettersson

There is a trend of increasing natural organic matter (NOM) in raw drinking waters of Nordic countries due to climate change.


1999 ◽  
Vol 40 (9) ◽  
pp. 257-264 ◽  
Author(s):  
J. P. van der Hoek ◽  
J. A. M. H. Hofman ◽  
A. Graveland

Amsterdam Water Supply (AWS) uses Biological Activated Carbon Filtration (BACF) for the removal of natural organic matter in general and the removal of organic micropollutants in particular. In order to minimize costs and environmental burden, it is important to know whether successive reactivations of carbon reduces its effectivity, and whether pesticides are effectively removed after prolonged running times of the carbon filters. The first aspect avoids the necessity of carbon replacement (i.e. costs), while the second aspect reduces the reactivation frequency (i.e. environmental burden). In a future extension scheme, AWS considers the use of an Integrated Mebrane System (IMS), and it is important to know whether the application of BACF is beneficial in the IMS. Six years of operation of BACF in the River-Lake Waterworks (31 million m3/year) have shown that successive reactivations do not affect the DOC removal capacity of the carbon. Three years of operation of BACF in the River-Dune Waterworks (70 million m3/year) have shown that the carbon retains its pesticide removal capacity. The use of BACF in an IMS shows important perspectives in minimizing the fouling of reverse osmosis membranes and in minimizing the organic carbon content in the membrane concentrate.


Sign in / Sign up

Export Citation Format

Share Document