scholarly journals Biological ion exchange as an alternative to biological activated carbon for natural organic matter removal: Impact of temperature and empty bed contact time (EBCT)

Chemosphere ◽  
2021 ◽  
pp. 132466
Author(s):  
Zhen Liu ◽  
Emily C. Mills ◽  
Madjid Mohseni ◽  
Benoit Barbeau ◽  
Pierre R. Bérubé
2018 ◽  
Vol 146 ◽  
pp. 256-263 ◽  
Author(s):  
P. Finkbeiner ◽  
J. Redman ◽  
V. Patriarca ◽  
G. Moore ◽  
B. Jefferson ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 370
Author(s):  
Muthia Elma ◽  
Amalia Enggar Pratiwi ◽  
Aulia Rahma ◽  
Erdina Lulu Atika Rampun ◽  
Mahmud Mahmud ◽  
...  

The high content of natural organic matter (NOM) is one of the challenging characteristics of peat water. It is also highly contaminated and contributes to some water-borne diseases. Before being used for potable purposes, peat water must undergo a series of treatments, particularly for NOM removal. This study investigated the effect of coagulation using aluminum sulfate coagulant and adsorption using powdered activated carbon (PAC) as a pretreatment of ultrafiltration (UF) for removal of NOM from actual peat water. After preparation and characterization of polysulfone (Psf)-based membrane, the system’s performance was evaluated using actual peat water, particularly on NOM removal and the UF performances. The coagulation and adsorption tests were done under variable dosings. Results show that pretreatment through coagulation–adsorption successfully removed most of the NOM. As such, the UF fouling propensity of the pretreated peat water was substantially lowered. The optimum aluminum sulfate dosing of 175 mg/L as the first pretreatment stage removed up to 75–78% NOM. Further treatment using the PAC-based adsorption process further increased 92–96% NOM removals at an optimum PAC dosing of 120 mg/L. The final UF-PSf treatment reached NOM removals of 95% with high filtration fluxes of up to 92.4 L/(m2.h). The combination of three treatment stages showed enhanced UF performance thanks to partial pre-removal of NOM that otherwise might cause severe membrane fouling.


2011 ◽  
Vol 64 (11) ◽  
pp. 2325-2332 ◽  
Author(s):  
A. Aryal ◽  
A. Sathasivan

Biological activated carbon (BAC) is operationally a simple treatment which can be employed to remove effluent organic matter (EfOM) from secondary wastewater effluent (SWWE). Unfortunately, BAC removes only a limited amount of dissolved organic carbon (DOC). Thus, maximizing DOC removal from SWWE using BAC is a major concern in wastewater reuse. This study has investigated a hybrid system of BAC and Magnetic Ion Exchange Resin (MIEX®) for the enhanced removal of DOC. Performance of both BAC prior to MIEX® (BAC/MIEX®) and reverse (MIEX®/BAC) combination was evaluated in terms of DOC removal. The BAC/MIEX® showed much better DOC removal. This is because microbial activity in the BAC bed converted MIEX® non-amenable DOC to MIEX® amenable DOC. As a result, BAC/MIEX® combination synergised DOC removal. In addition, BAC was also found to be highly effective in reducing MIEX® dose for a given DOC removal from SWWE.


Sign in / Sign up

Export Citation Format

Share Document