The Neuroprotective Effect of the Forebrain-S elective NMD A Antagonist CP101,606 upon Focal Ischemic Brain Damage Caused by Acute Subdural Hematoma in the Rat

1997 ◽  
Vol 14 (6) ◽  
pp. 409-417 ◽  
Author(s):  
EIJI TSUCHIDA ◽  
MELODY RICE ◽  
ROSS BULLOCK
1991 ◽  
Vol 74 (6) ◽  
pp. 944-950 ◽  
Author(s):  
Min-Hsiung Chen ◽  
Ross Bullock ◽  
David I. Graham ◽  
Jimmy D. Miller ◽  
James McCulloch

✓ The ability of a competitive N-methyl-D-aspartate (NMDA) receptor antagonist (D-CPP-ene) to reduce irreversible brain damage has been examined in a rodent model of acute subdural hematoma. Acute subdural hematoma was produced by the slow injection of 400 µl homologous blood into the subdural space overlying the parietal cortex in halothane-anesthetized rats. Brain damage was assessed histologically in sections at multiple coronal planes in animals sacrificed 4 hours after induction of the subdural hematoma. Pretreatment with D-CPP-ene (15 mg/kg) significantly reduced the volume of ischemic brain damage produced by the subdural hematoma from 62 ± 8 cu mm (mean ± standard error of the mean) in vehicle-treated control rats to 29 ± 7 cu mm in drug-treated animals. These data demonstrate the anti-ischemic efficacy of NMDA antagonists in an animal model of intracranial hemorrhage in which intracranial pressure is elevated, and suggest that excitotoxic mechanisms (which are susceptible to antagonism by D-CPP-ene) may play a role in the ischemic brain damage which is observed in patients who die after acute subdural hematoma.


Neurosurgery ◽  
1990 ◽  
pp. 433 ◽  
Author(s):  
J D Miller ◽  
R Bullock ◽  
D I Graham ◽  
M H Chen ◽  
G M Teasdale

2005 ◽  
Vol 103 (4) ◽  
pp. 724-730 ◽  
Author(s):  
Taek Hyun Kwon ◽  
Dong Sun ◽  
Wilson P. Daugherty ◽  
Bruce D. Spiess ◽  
M. Ross Bullock

Object. This study was conducted to determine whether perfluorocarbons (PFCs) improve brain oxygenation and reduce ischemic brain damage in an acute subdural hematoma (SDH) model in rats. Methods. Forty adult male Sprague—Dawley rats were allocated to four groups: 1) controls, acute SDH treated with saline and 30% O2; 2) 30-PFC group, acute SDH treated with PFC infusion in 30% O2; 3) 100-O2 group, acute SDH treated with 100% O2; and 4) 100-PFC group, acute SDH treated with PFC plus 100% O2. Ten minutes after the induction of acute SDH, a single dose of PFC was infused and 30% or 100% O2 was administered simultaneously. Four hours later, half of the rats were killed by perfusion for histological study to assess the extent of ischemic brain damage. The other half were used to measure brain tissue oxygen tension (PO2). The volume of ischemic brain damage was 162.4 ± 7.6 mm3 in controls, 165.3 ± 11.3 mm3 in the 30-PFC group, 153.4 ± 17.3 mm3 in the 100-O2 group, and 95.9 ± 12.8 mm3 in the 100-PFC group (41% reduction compared with controls, p = 0.002). Baseline brain tissue PO2 values were approximately 20 mm Hg, and after induction of acute SDH, PO2 rapidly decreased and remained at 1 to 2 mm Hg. Treatment with either PFC or 100% O2 improved brain tissue PO2, with final values of 5.14 and 7.02 mm Hg, respectively. Infusion of PFC with 100% O2 improved brain tissue PO2 the most, with a final value of 15.16 mm Hg. Conclusions. Data from the current study demonstrated that PFC infusion along with 100% O2 can significantly improve brain oxygenation and reduce ischemic brain damage in acute SDH.


Neurosurgery ◽  
1990 ◽  
Vol 27 (3) ◽  
pp. 433-439 ◽  
Author(s):  
Jimmy D. Miller ◽  
Ross Bullock ◽  
David I. Graham ◽  
Graham M. Teasdale

2021 ◽  
Author(s):  
Xiaoxia Yang ◽  
Mengxia Wang ◽  
Qian Zhou ◽  
Yanxian Bai ◽  
Jing Liu ◽  
...  

Abstract Lepidium meyenii (Maca) is an annual or biennial herb from South America that is a member of the genus Lepidium L. in the family Cruciferae. This herb has antioxidant, anti-apoptotic, and enhances autophagy functions and can prevent cell death, and protect neurons from ischemic damage. Macamide B, an effective active ingredient of maca, has a neuroprotective role in neonatal hypoxic-ischemic brain damage (HIBD), and the underlying mechanism of its neuroprotective effect is not yet known. The purpose of this study is to explore the impact of macamide B on HIBD-induced autophagy and apoptosis and its potential mechanism for neuroprotection. The modified Rice-Vannucci method was used to induce HIBD on 7-day-old (P7) macamide B and vehicle-pretreated pups. TTC staining was used to evaluate the cerebral infarct volume of pups, brain water content was measured to evaluate the neurological function of pups, neurobehavioral testing was used to assess functional recovery after HIBD, TUNEL and FJC staining was used to detect cell autophagy and apoptosis, and western blot analysis was used to detect the expression levels of the pro-survival signaling pathway phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and autophagy and the apoptosis-related proteins. The results show that macamide B pretreatment can significantly decrease brain damage, improve the recovery of neural function after HIBD. At the same time, macamide B pretreatment can induce the activation of PI3K/AKT signaling pathway after HIBD, enhance autophagy, and reduce hypoxic-ischemic (HI)-induced apoptosis. In addition, 3-methyladenine (3-MA), an inhibitor of PI3K/AKT signaling pathway, significantly inhibits the increase in autophagy levels, aggravates HI-induced apoptosis, and reverses the neuroprotective effect of macamide B on HIBD. Our data indicate that macamide B pretreatment might regulate autophagy through PI3K/AKT signaling pathway, thereby reducing HIBD-induced apoptosis and exerting neuroprotective effects on neonatal HIBD. Macamide B may become a new drug for the prevention and treatment of HIBD.


Sign in / Sign up

Export Citation Format

Share Document