Tissue Engineering of the Anterior Cruciate Ligament—Sodium Dodecyl Sulfate-Acellularized and Revitalized Tendons Are Inferior to Native Tendons

2010 ◽  
Vol 16 (3) ◽  
pp. 1031-1040 ◽  
Author(s):  
Thomas Tischer ◽  
Sebastian Aryee ◽  
Gabriele Wexel ◽  
Erwin Steinhauser ◽  
Christopher Adamczyk ◽  
...  
Author(s):  
Mohammad Amin Keshvari ◽  
Alireza Afshar ◽  
Sajad Daneshi ◽  
Arezoo Khoradmehr ◽  
Mandana Baghban ◽  
...  

Chronic kidney diseases (CKD) and end stage renal disease (ESRD) are growing threats worldwide. Tissue engineering is a new hope to surpass the current limitations such as the shortage of donor. To do so, the first step would be fabrication of an intact decellularized kidney scaffold. In the current study, an automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis. After anesthesia, kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin (H&E), periodic acid Schiff (PAS), Masson’s trichrome, and alcian blue to determine cell removal and glycogen, collagen and glycosaminoglycans (GAGs) contents, respectively. Moreover, scanning electron microscopy (SEM) was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility and bioactivity of the decellularized scaffolds, allotransplantation was performed in back muscle and angiogenesis was evaluated. Complete cell removal in both SLES and SDS groups was observed in SEM and DNA quantification assays. Moreover, the extracellular matrix (ECM) architecture of rat kidney in the SLES group was significantly preservation better than the SDS group was shown. The formation of blood capillaries and vessels were observed in the kidney allotransplantations in both SLES and SDS decellularized kidneys. In conclusion, we demonstrated that both SLES and SDS could be promising tools in kidney tissue engineering. The better preservation of ECM than SDS, introduces SLES as the solvent of choice for kidney decellularization. ¬¬


2015 ◽  
Vol 15 (01) ◽  
pp. 1550006 ◽  
Author(s):  
ZHENG LI ◽  
JIANKANG HE ◽  
XIANG LI ◽  
WEIGUO BIAN ◽  
WENYOU ZHANG ◽  
...  

Silk was widely investigated as a promising scaffold material in ligament tissue engineering. Although a variety of silk scaffolds were developed for the regeneration of anterior cruciate ligament (ACL) in vitro and in vivo, more investigations should be performed in large animals to translate these findings into clinical applications. The aim of this study is to evaluate the feasibility of using silk-based ACL scaffolds to regenerate damaged ACLs in porcine model. The microstructural organization, tissue regeneration as well as ligament-bone interface of silk implants were evaluated with scanning electron microscopy, micro-computerized tomography, histological and immunohistochemical staining at three and six months postoperatively. The results demonstrated that silk fibers in the ACL scaffolds organized in parallel similar with collagen fibers in native ligaments, which facilitated and guided the penetration of newly regenerated tissue into the pores among silk fibers. Collagen production especially collagen I in silk implants significantly increased from three to six months, and was gradually close to the level of native ligaments. At implant-bone interface, indirect ligament-bone insertion was observed at three months and substantial Sharpey's fibers formed at six months. The results indicated that the silk-based ACL scaffold provides a promising tissue engineering approach for ACL regeneration.


Sign in / Sign up

Export Citation Format

Share Document