sodium lauryl ether sulfate
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 11 (6) ◽  
pp. 68-74
Author(s):  
Vidi Posdo Simarmata

Disinfectants are chemical agents used in disinfection in liquid form or solution form and are well-known as microbicidal, fungicidal, and virucidal but still unknown as parasiticidal, especially the effect to A. lumbricoides. In Indonesia, the prevalence of ascariasis is about 30,4% and still high. Ascariasis is caused by A. lumbricoides helminth that human swallows in egg form. Ascaris lumbricoides egg's characteristics are hydrophobic and sticky, making it easy to stick on the floor, household, and skin. This research aims to find the difference between the combination of the effects of Alcohol Ethoxylate-Sodium Lauryl Ether Sulfate and the combination of Carbol-Pine Oil to A. lumbricoides eggshell and larva development as prevention and to break the life cycle chain of A. lumbricoides. The research results showed no effects from Alcohol Ethoxylate- Sodium Lauryl Ether Sulfate combination and Carbol-Pine Oil combination to A. lumbricoides eggshell and embryo development. Keywords: Disinfectants, ascariasis, concentration, eggshell, larva development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ludovica Rolando ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Livia Mariani ◽  
Jasmin Rauseo ◽  
...  

The anionic surfactant sodium lauryl ether sulfate (SLES) is the main component of most commercial foaming agents (FAs) used in the excavation of highway and railway tunnels with Earth pressure balance-tunnel boring machines (EPB-TBMs). Several hundreds of millions of tons of spoil material, consisting of soil mixed with FAs, are produced worldwide, raising the issue of their handling and safe disposal. Reducing waste production and reusing by-products are the primary objectives of the “circular economy,” and in this context, the biodegradation of SLES becomes a key question in reclaiming excavated soils, especially at construction sites where SLES degradation on the spot is not possible because of lack of space for temporary spoil material storage. The aim of the present work was to apply a bacterial consortium (BC) of SLES degraders to spoil material excavated with an EPB-TBM and coming from a real construction site. For this purpose, the BC capability to accelerate SLES degradation was tested. Preliminary BC growth, degradation tests, and ecotoxicological evaluations were performed on a selected FA. Subsequently, a bioaugmentation experiment was conducted; and the microbial abundance, viability, and SLES concentrations in spoil material were evaluated over the experimental time (0.5, 3, 6, 24, 48, and 144 h). Moreover, the corresponding aqueous elutriates were extracted from all the soil samples and analyzed for SLES concentration and ecotoxicological evaluations with the bacterium Aliivibrio fischeri. The preliminary experiments showed the BC capability to grow under 14 different concentrations of the FA. The maximum BC growth rates and degradation efficiency (100%) were achieved with initial SLES concentrations of 125, 250, and 500 mg/L. The subsequent bioaugmentation of the spoil material with BC significantly (sixfold) improved the degradation time of SLES (DT50 1 day) compared with natural attenuation (DT50 6 days). In line with this result, neither SLES residues nor toxicity was recorded in the soil extracts showing the spoil material as a by-product promptly usable. The bioaugmentation with BC can be a very useful for cleaning spoil material produced in underground construction where its temporary storage (for SLES natural biodegradation) is not possible.


2021 ◽  
Vol 882 ◽  
pp. 183-190
Author(s):  
Tran Thi Kim Ngan ◽  
Tran Thien Hien ◽  
Le Thi Hong Nhan ◽  
Xuan Tien Le

Today, the need for human care and beauty is increasing. The use of personal care products, especially those from nature, has been given special attention by consumers. With diverse features and good effects on the human body, especially the skin, coconut oil is being cared for by many manufacturers. With the aim of diversifying personal care products from coconut oil, this research has initially achieved positive results. Soap saponified as raw soap is considered to have good cleaning effect (better than sodium lauryl sulfate solution (SLS) when diluted to the same concentration). The combination of 10% crude soap and 4% sodium lauryl ether sulfate (SLES) surfactants formulate cleansing products with effective cleansing properties. Ingredients auxiliary cleaners, moisturizing, and softening, antioxidants are added with the appropriate content to improve the disadvantages of raw soap. The personal care products that have been studied have the potential to enter the cosmetic market and attract many consumers.


2021 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Ahmad Azargoon Jahromi ◽  
Hojat Naderi ◽  
Ali Dehghani

In this research, filtration experiments were carried out by four types of surfactants as filter aid. Sodium dodecyl sulfate and sodium lauryl ether sulfate as anionic surfactant (SDS and SLES), polyethylene glycol as nonionic surfactant (PEG) and cetyl trimethylammonium bromide as cationic surfactant (CTAB) were used to were used in order to evaluate their effects on moisture reduction of concentrate and improvement of the filtration process. All of the tests were done at the optimal conditions include 60 KPa vacuum pressure, 120 s filtration time, 105 microns particle size and 60% (w/w) solid content of pulp. Results showed that in all of the tests, cake moisture decreased by adding surfactants; however, anionic surfactants SDS and SLES were better than other chemicals. By adding 100 g/t SDS and SLES to the pulp, the filter cake moisture content was reduced by 2%. SDS and SLES improves filtration performance by increasing the ratio of throughput to moisture. At the concentration of 100 g per ton SDS and SLES, the highest throughput and lowest moisture was achieved. Although both of SDS and SLES have similar chemical structure and action, SLES was selected due to better solubility in hard water, economic justification and availability.


2021 ◽  
Author(s):  
Mohammad Amin Keshvari ◽  
Alireza Afshar ◽  
Sajad Daneshi ◽  
Arezoo Khoradmehr ◽  
Mandana Baghban ◽  
...  

Abstract Background: Chronic kidney diseases and end stage renal disease are growing threats worldwide. Tissue engineering is a new hope to surpass the current limitations such as the shortage of donor. To do so, the first step would be fabrication of an intact decellularized kidney scaffold. In the current study, an automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis.Methods: After anesthesia, kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin, periodic acid Schiff, Masson’s trichrome, and Alcian blue to determine cell removal and glycogen, collagen and glycosaminoglycan contents, respectively. Moreover, scanning electron microscopy was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility and bioactivity of the decellularized scaffolds two tests were done. The scaffolds were recellularized with the human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs). In addition, the allotransplantation was performed in back muscle and angiogenesis was evaluated.Results: Complete cell removal in both SLES and SDS groups was observed in scanning electron microscopy and DNA quantification assays. Moreover, the extracellular matrix architecture of rat kidney in the SLES group was significantly preserved better than the SDS group. The hUC-MSCs were successfully migrated from the cell culture plate surface into the SDS and SLES decellularized scaffolds. The formation of blood capillaries and vessels were observed in the kidney allotransplantation in both SLES and SDS decellularized kidneys.Conclusions: We demonstrated that both SLES and SDS could be promising tools in kidney tissue engineering. The better preservation of extracellular matrix than SDS, introduces SLES as the solvent of choice for kidney decellularization.


Author(s):  
Elisabetta Salvatori ◽  
Jasmin Rauseo ◽  
Luisa Patrolecco ◽  
Anna Barra Caracciolo ◽  
Francesca Spataro ◽  
...  

AbstractThe anionic surfactant SLES (sodium lauryl ether sulfate) is an emerging contaminant, being the main component of foaming agents that are increasingly used by the tunnel construction industry. To fill the gap of knowledge about the potential SLES toxicity on plants, acute and chronic effects were assessed under controlled conditions. The acute ecotoxicological test was performed on Lepidum sativum L. (cress) and Zea mays L. (maize). Germination of both species was not affected by SLES in soil, even at concentrations (1200 mg kg−1) more than twice higher than the maximum realistic values found in contaminated debris, thus confirming the low acute SLES toxicity on terrestrial plants. The root elongation of the more sensitive species (cress) was instead reduced at the highest SLES concentration. In the chronic phytotoxicity experiment, photosynthesis of maize was downregulated, and the photosynthetic performance (PITOT) significantly reduced already under realistic exposures (360 mg kg−1), owing to the SLES ability to interfere with water and/or nutrients uptake by roots. However, such reduction was transient, likely due to the rapid biodegradation of the surfactant by the soil microbial community. Indeed, SLES amount decreased in soil more than 90% of the initial concentration in only 11 days. A significant reduction of the maximum photosynthetic capacity (Pnmax) was still evident at the end of the experiment, suggesting the persistence of negative SLES effects on plant growth and productivity. Overall results, although confirming the low phytotoxicity and high biodegradability of SLES in natural soils, highlight the importance of considering both acute and nonlethal stress effects to evaluate the environmental compatibility of soil containing SLES residues.


Sign in / Sign up

Export Citation Format

Share Document