Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(ɛ-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation In Vitro

2010 ◽  
Vol 16 (8) ◽  
pp. 2661-2673 ◽  
Author(s):  
Aurelio Salerno ◽  
Daniela Guarnieri ◽  
Maria Iannone ◽  
Stefania Zeppetelli ◽  
Paolo A. Netti
Author(s):  
Marco Domingos ◽  
Antonio Gloria ◽  
Jorge Coelho ◽  
Paulo Bartolo ◽  
Joaquim Ciurana

Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycaprolactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite (nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 µm and to assess the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an increase in polycaprolactone compressive modulus ( E) from 105.5 ± 11.2 to 138.8 ± 12.9 MPa (PCL_nHA) and 217.2 ± 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or PCL_mHA structures.


2011 ◽  
Vol 26 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Taís Somacal Novaes Silva ◽  
Bruno Tochetto Primo ◽  
Aurelício Novaes Silva Júnior ◽  
Denise Cantarelli Machado ◽  
Christian Viezzer ◽  
...  

Purpose: To evaluate the ability of macroporous tricalcium phosphate cement (CPC) scaffolds to enable the adhesion, proliferation, and differentiation of mesenchymal stem cells derived from human bone marrow. Methods: Cells from the iliac crest of an adult human donor were processed and cultured on macroporous CPC discs. Paraffin spheres sized between 100 and 250µm were used as porogens. Cells were cultured for 5, 10, and 15 days. Next, we assessed cells' behavior and morphology on the biomaterial by scanning electron microscopy. The expression levels of the BGLA and SSP1 genes and the alkaline phosphatase (ALP) activity were quantified by the quantitative real-time polymerase chain reaction technique (QT-PCR) using the fluorophore SYBR GREEN®. Results: QT-PCR detected the expression of the BGLA and SSP1 genes and the ALP activity in the periods of 10 and 15 days of culture. Thus, we found out that there was cell proliferation and differentiation in osteogenic cells. Conclusion: Macroporous CPC, with pore sized between 100 and 250µm and developed using paraffin spheres, enables adhesion, proliferation, and differentiation of mesenchymal stem cells in osteogenic cells and can be used as a scaffold for bone tissue engineering.


2018 ◽  
Vol 27 (23) ◽  
pp. 1634-1645 ◽  
Author(s):  
Yunpeng Zhang ◽  
Yixiao Xing ◽  
Linglu Jia ◽  
Yawen Ji ◽  
Bin Zhao ◽  
...  

2014 ◽  
Vol 9 (10) ◽  
pp. 1304-1311 ◽  
Author(s):  
Guifang Gao ◽  
Arndt F. Schilling ◽  
Tomo Yonezawa ◽  
Jiang Wang ◽  
Guohao Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document