Mesenchymal Stem Cells Maintain Long-Term In Vitro Stemness During Explant Culture

2013 ◽  
Vol 19 (12) ◽  
pp. 937-948 ◽  
Author(s):  
Anna Otte ◽  
Vesna Bucan ◽  
Kerstin Reimers ◽  
Ralf Hass
2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2017 ◽  
Vol 118 (10) ◽  
pp. 3072-3079 ◽  
Author(s):  
Annelise Pezzi ◽  
Bruna Amorin ◽  
Álvaro Laureano ◽  
Vanessa Valim ◽  
Alice Dahmer ◽  
...  

2008 ◽  
Vol 68 (11) ◽  
pp. 4229-4238 ◽  
Author(s):  
Reza Izadpanah ◽  
Deepak Kaushal ◽  
Christopher Kriedt ◽  
Fern Tsien ◽  
Bindiya Patel ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1361-1361
Author(s):  
Elisa Montelatici ◽  
Gabriella Andriolo ◽  
Mihaela Crisan ◽  
Rosaria Giordano ◽  
Paolo Rebulla ◽  
...  

Abstract Mesenchymal stem cells (MSC) can be derived selectively in culture from multiple organs, an omnipresence we have recently suggested to be explained by the perivascular location of native MSC ancestors within intact tissues (Crisan et al. 2008, in press). We have now analyzed the ability of MSC extracted pro- or retrospectively from different human tissues to support hematopoiesis. MSC were either classically derived in primary cultures of umbilical cord blood (UCB) lineage-depleted mononuclear cells (n=3) or enzymatically dissociated adult adipose tissue (n=3), or grown as CD146+ NG2+ CD34-CD56- CD45- pericytes (n=2) purified by flow cytometry from fetal skeletal muscle and cultured over the long term. In both settings, identical MSC were obtained that maintained a stable CD146+ CD90+ CD73+ CD105+ CD34- CD45- surface phenotype and could differentiate into skeletal muscle, fat, bone and cartilage. CD34+ hematopoietic progenitors (n=3) immunoselected from term UCB were seeded (5×10e3cells/cm2 in triplicate) onto confluent irradiated layers of MSC derived from UCB, adipose tissue or fetal muscle pericytes (MSCu, MSCa and MSCmp, respectively) or, as a control, MS5 bone marrow stromal cells that allow the proliferation of very primitive human progenitor cells. All studies were approved by the relevant institutional regulatory board. The cells were cocultured for 5 weeks in a classical long-term culture-initiating cell assay in a complete medium (MyeloCult H5100, Stem Cell Technologies) containing hydrocortisone but no added cytokine. Wells were scored daily for the presence of cobblestone areas (CA) and half of the medium was replaced every week. Eventually, trypsinized cells from each well were characterized by flow cytometry for the expression of hematopoietic cell markers and assayed for CFC potential. After 14 days of incubation, colonies grown in semi-solid medium were scored as derived from colony forming units (CFU)-granulocyte, erythroid, macrophage, megakaryocyte (GEMM) and as high-proliferative-potential colony precursors (HPPC), the most primitive hematopoietic cell so far identified in a clonogenic assay in vitro. Within the CD45+ gate, all trypsinized cultures contained comparable percentages of CD34+lin- cells (MSCu: 51±9%; MSCa: 58±14%; MSCmp: 61±19%; MS5: 59±18%), the most immature hematopoietic cell compartment maintained during the long-term coculture. MSCu and MSCmp supported a similar cell proliferation during the whole culture while on MSCa, CA formed very rapidly and consistently but eventually decreased over the long-term culture. Interestingly, MSCu and MSCmp supported the development of the highest numbers of HPPC and of CFU giving rise to the largest GEMM colonies, as compared to MSCa that gave the same results as the control MS5 cell line. In summary, all MSCs tested were able to support hematopoiesis and CA formation, albeit with differences in growth kinetics and morphology of the colonies. Herein we show for the first time that purified human perivascular cells exhibit robust hematopoiesis support in vitro, in addition to multilineage mesodermal developmental potential. In conclusion, we demonstrate that MSC from novel sources distinct from the bone marrow are able to support hematopoiesis. These results further sustain the identity, beyond acronyms, between marrow stromal cells, long known for their support of hematopoiesis, and mesenchymal stem cells that gained more recent credit in the field of regenerative medicine because of their multilineage differentiation potential.


2017 ◽  
Vol 19 (3) ◽  
pp. 159-170 ◽  
Author(s):  
Agnese Gugliandolo ◽  
Thangavelu Soundara Rajan ◽  
Domenico Scionti ◽  
Francesca Diomede ◽  
Placido Bramanti ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Youwei Wang ◽  
Zhi-bo Han ◽  
Yong-ping Song ◽  
Zhong Chao Han

Mesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-termin vitroexpansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.


Author(s):  
Luminita Labusca ◽  
Dumitru-Daniel Herea ◽  
Anca Emanuela Minuti ◽  
Cristina Stavila ◽  
Camelia Danceanu ◽  
...  

Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies.Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell.Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC.Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.


2020 ◽  
Author(s):  
Zeyuan Cao ◽  
Yunyi Xie ◽  
Le Yu ◽  
Yi Li ◽  
Yan Wang

Abstract Background: Mesenchymal stem cells (MSCs) have a limited self-renewal ability, impaired multi-differentiation potential, and undetermined cell senescence during in vitro series expansion. To address this concern, we investigated the effects of the microenvironment provided by stem cells from human exfoliated deciduous teeth (SHED) in maintaining the stemness of human bone marrow mesenchymal stem cells (hBMSCs) and identified the key factors and possible mechanisms responsible for maintaining the stemness of MSCs during long-term expansion in vitro.Methods: The passage 3 (P3) to passage 8 (P8) hBMSCs were cultured in the conditioned medium from SHED (SHED-CM). The percentage of senescent cells was evaluated by β-galactosidase staining. In addition, the osteogenic differentiation potential was analyzed by reverse transcription quantitative PCR (RT-qPCR), Western blot, alizarin red and alkaline phosphatase (ALP) staining. Furthermore, RT-qPCR results identified hepatocyte growth factor (HGF) and stem cell factor (SCF) as key factors. Thus, the effects of HGF and SCF on mitochondrial function were assessed by measuring the ROS and mitochondrial membrane potential levels. Finally, selected mitochondrial-related proteins associated with the PI3K/AKT, ERK1/2, and STAT3 signaling pathways were investigated to determine the effects of HGF and SCF in preserving the mitochondrial function of hBMSCs during long-term expansion.Results: SHED-CM had significantly enhanced the cell viability, reduced the senescent cells, and maintained the osteogenesis and pro-angiogenic capacity in P8 hBMSCs during long-term expansion. In addition, hBMSCs treated with 100 ng/ml HGF and 10 ng/ml SCF had reduced ROS levels, and preserved mitochondrial membrane potential compared with P8 hBMSCs during long-term expansion. Furthermore, HGF and SCF upregulated the expression of mitochondrial-related proteins associated with the PI3K/AKT, ERK1/2, and STAT3 signaling pathways, possibly contributing to the maintenance of hBMSCs stemness by preserving mitochondrial function.Conclusion: Both HGF and SCF are key factors in maintaining the stemness of hBMSCs by preserving mitochondrial function through the expression of proteins associated with the PI3K/AKT, ERK1/2, and STAT3 signaling pathways. This study provides new insights into the anti-senescence capability of HGF and SCF, as well as new evidence for their potential application in optimizing the long-term culture of MSCs.


Sign in / Sign up

Export Citation Format

Share Document