MYOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS IN VITRO AND LONG-TERM SURVIVAL IN A NUDE RAT MODEL FOR URINARY INCONTINENCE

2009 ◽  
Vol 181 (4) ◽  
pp. 681
Author(s):  
Gerhard Feil ◽  
Adriana Drost ◽  
Simon Baumann ◽  
Jochen Schäfer ◽  
Sibylle Weng ◽  
...  
2008 ◽  
Vol 179 (4S) ◽  
pp. 484-485
Author(s):  
Gerhard Feil ◽  
Jochen Schafer ◽  
Julia Wiedemann ◽  
Sabine Maurer ◽  
Robert Moehle ◽  
...  

2012 ◽  
Vol 1498 ◽  
pp. 39-45
Author(s):  
Courtney E. LeBlon ◽  
Caitlin R. Fodor ◽  
Tony Zhang ◽  
Xiaohui Zhang ◽  
Sabrina S. Jedlicka

ABSTRACTHuman mesenchymal stem cells (hMSCs) were routinely cultured on tissue-culture polystyrene (TCPS) to investigate the in vitro aging and cell stiffening. hMSCs were also cultured on thermoplastic polyurethane (TPU), which is a biocompatible polymer with an elastic modulus of approximately 12.9MPa, to investigate the impact of substrate elastic modulus on cell stiffening and differentiation potential. Cells were passaged over several generations on each material. At each passage, cells were subjected to osteogenic and myogenic differentiation. Local cell elastic modulus was measured at every passage using atomic force microscopy (AFM) indentation. Gene and protein expression was examined using qRT-PCR and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Results show that the success of myogenic differentiation is highly reliant on the elastic modulus of the undifferentiated cells. The success of osteogenic differentiations is most likely somewhat dependent on the cell elastic modulus, as differentiations were more successful in earlier passages, when cells were softer.


2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2016 ◽  
Vol 5 (9) ◽  
pp. 1049-1057 ◽  
Author(s):  
Jinming Li ◽  
Wayne Yukwai Lee ◽  
Tianyi Wu ◽  
Jianbin Xu ◽  
Kunyu Zhang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2060 ◽  
Author(s):  
Joanna Czarnecka ◽  
Marek Wiśniewski ◽  
Natalia Forbot ◽  
Paulina Bolibok ◽  
Artur P. Terzyk ◽  
...  

The cytotoxic influence of two different carbonaceous nanomaterials on human mesenchymal stem cells (MSCs) cultured in vitro was compared in the short (1–3 days) and long term (up to 60 days). Amorphous carbon and single-walled carbon nanotubes were chosen and evaluated due to their contrasting physicochemical properties. Both materials, though supposed similarly low-toxic in basic short-term cytotoxicity assays, demonstrated dramatically different properties in the long-term study. The surface chemistry and biomolecule-adsorption capacity turned out to be crucial factors influencing cytotoxicity. We proved that amorphous carbon is able to weakly bind a low-affinity protein coat (so-called soft corona), while carbon nanotubes behaved oppositely. Obtained results from zeta-potential and adsorption measurements for both nanomaterials confirmed that a hard protein corona was present on the single-walled carbon-nanotube surface that aggravated their cytotoxic influence. The long-term exposure of the mesenchymal stem cells to carbon nanotubes, coated by the strongly bound proteins, showed a significant decrease in cell-growth rate, followed by cell senescence and death. These results are of great importance in the light of increasing nanomaterial applications in biomedicine and cell-based therapies. Our better understanding of the puzzling cytotoxicity of carbonaceous nanomaterials, reflecting their surface chemistry and interactions, is helpful in adjusting their properties when tailored for specific applications.


2021 ◽  
Author(s):  
Jianhua Zhang ◽  
Julia Griesbach ◽  
Marsel Ganeyev ◽  
Anna-Katharina Zehnder ◽  
Peng Zeng ◽  
...  

Abstract Mechanical loading has been shown to influence various osteogenic responses of bone-derived cells and bone formation in vivo. However, the influence of mechanical stimulation on the formation of bone organoid in vitro is not clearly understood. Here, 3D bioprinted human mesenchymal stem cells (hMSCs)-laden graphene oxide composite scaffolds were cultured in cyclic-loading bioreactors for up to 56 days. Our results showed that mechanical loading from day 1 (ML01) significantly increased organoid mineral density, organoid stiffness, and osteoblast differentiation compared with non-loading and mechanical loading from day 21. Importantly, ML01 stimulated collagen I maturation, osteocyte differentiation, lacunar-canalicular network formation and YAP expression on day 56. These finding are the first to reveal that long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Such 3D bone organoids may serve as a human-specific alternative to animal testing for the study of bone pathophysiology and drug screening.


Sign in / Sign up

Export Citation Format

Share Document