Development of a perfusion reactor for intervertebral disc regeneration

Author(s):  
Alexander Upenieks ◽  
Aaryn Montgomery-Song ◽  
J. Paul Santerre ◽  
Rita Kandel
2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Ching Tzaan ◽  
Hsien-Chih Chen

Intervertebral disc (IVD) degeneration is a multifactorial process that is influenced by contributions from genetic predisposition, the aging phenomenon, lifestyle conditions, biomechanical loading and activities, and other health factors (such as diabetes). Attempts to decelerate disc degeneration using various techniques have been reported. However, to date, there has been no proven technique effective for broad clinical application. Granulocyte colony-stimulating factor (GCSF) is a growth factor cytokine that has been shown to enhance the availability of circulating hematopoietic stem cells to the brain and heart as well as their capacity for mobilization of mesenchymal bone marrow stem cells. GCSF also exerts significant increases in circulating neutrophils as well as potent anti-inflammatory effects. In our study, we hypothesize that GCSF can induce bone marrow stem cells differentiation and mobilization to regenerate the degenerated IVD. We found that GCSF had no contribution in disc regeneration or maintenance; however, there were cell proliferation within end plates. The effects of GCSF treatment on end plates might deserve further investigation.


BIOCELL ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 893-898
Author(s):  
PETRA KRAUS ◽  
ANKITA SAMANTA ◽  
SINA LUFKIN ◽  
THOMAS LUFKIN

2020 ◽  
Vol 10 (24) ◽  
pp. 9009
Author(s):  
Chiara Borrelli ◽  
Conor T. Buckley

The intervertebral disc (IVD) relies mainly on diffusion through the cartilaginous endplates (CEP) to regulate the nutrient and metabolites exchange, thus creating a challenging microenvironment. Degeneration of the IVD is associated with intradiscal acidification and elevated levels of pro-inflammatory cytokines. However, the synergistic impact of these microenvironmental factors for cell-based therapies remains to be elucidated. The aim of this study was to investigate the effects of low pH and physiological levels of interleukin-1ß (IL-1β) and tumour necrosis factor-α (TNF-α) on nasal chondrocytes (NCs) and subsequently compare their matrix forming capacity to nucleus pulposus (NP) cells in acidic and inflamed culture conditions. NCs and NP cells were cultured in low glucose and low oxygen at different pH conditions (pH 7.1, 6.8 and 6.5) and supplemented with physiological levels of IL-1β and TNF-α. Results showed that acidosis played a pivotal role in influencing cell viability and matrix accumulation, while inflammatory cytokine supplementation had a minor impact. This study demonstrates that intradiscal pH is a dominant factor in determining cell viability and subsequent cell function when compared to physiologically relevant inflammatory conditions. Moreover, we found that NCs allowed for improved cell viability and more effective NP-like matrix synthesis compared to NP cells, and therefore may represent an alternative and appropriate cell choice for disc regeneration.


2014 ◽  
Vol 10 (9) ◽  
pp. 561-566 ◽  
Author(s):  
Yong-Can Huang ◽  
Jill P. G. Urban ◽  
Keith D. K. Luk

2014 ◽  
Vol 4 (1_suppl) ◽  
pp. s-0034-1376561-s-0034-1376561
Author(s):  
E. Potier ◽  
S. de Vries ◽  
M. Tryfonidou ◽  
K. Ito

2011 ◽  
Vol 17 (10) ◽  
pp. 961-972 ◽  
Author(s):  
Diana Ribeiro Pereira ◽  
Joana Silva-Correia ◽  
Sofia Glória Caridade ◽  
Joao T. Oliveira ◽  
Rui A. Sousa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document