Differential Regulation of the Production of Reactive Oxygen Species in Th1 Cytokine–Treated Thyroid Cells

Thyroid ◽  
2014 ◽  
Vol 24 (3) ◽  
pp. 441-452 ◽  
Author(s):  
Ides M. Colin ◽  
Sylvie Poncin ◽  
Philippe Levêque ◽  
Bernard Gallez ◽  
Anne-Catherine Gérard
2013 ◽  
Vol 134 (2) ◽  
pp. 276-290 ◽  
Author(s):  
Florencia Chiappini ◽  
Carolina Pontillo ◽  
Andrea S. Randi ◽  
Laura Alvarez ◽  
Diana L. Kleiman de Pisarev

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Zheng Xu

Objective: Reactive oxygen species (ROS) generated from activated platelets is known to regulate platelet activation. This study investigates how different isoforms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases (NOXs) mediates different platelet activation pathways. Approach and Results: ROS generation in different platelet activation pathways are mediated differentially by NOX1 and NOX2. NOX1 -/y platelets showed no defects in platelet aggregation and secretion induced by glycoprotein (GP) VI agonists, collagen-related peptide (CRP), but were partially defective in platelet aggregation and secretion induced by low doses of agonists of G protein coupled receptor (GPCR), thrombin, protease-activated receptor 4 agonist peptide (PAR4AP) and thromboxane A2 analog U46619. In contrast, NOX2 -/- platelets showed significantly defective platelet aggregation and secretion induced by CRP, and also showed partial inhibition of thrombin-induced platelet aggregation and secretion. Consistently, production of reactive oxygen species (ROS) was inhibited in NOX1 -/- platelets stimulated with thrombin, but not CRP, whereas NOX2 -/- platelets were defective ROS generation induced by CRP or thrombin. These differential effects of NOX1 and NOX2 is likely due to upstream differential regulation of these different enzymes, as thrombin-stimulated NOX1-/y platelets and CRP-stimulated NOX2-/- platelets similarly showed defective activation of tyrosine kinase Syk, its downstream target phospholipase Cγ (PLCγ) and calcium mobilization, which is mediated by PLC. Furthermore, mitogen-activated protein kinase pathways, which is another important platelet activation pathway was not significantly affected in either NOX1-/y or NOX2-/- platelets. Finally, NOX-/- platelets is defective in mediating arteriolar thrombosis in vivo, although minimally affected tail bleeding time. Conclusions: NOX1 and NOX2 play differential roles in different platelet activation pathways. The differential roles of these enzyme are due to differential upstream regulation. Both NOX isoforms mediates platelet activation via a common ROS-dependent activation Src-PLC-calcium signaling pathway.


2012 ◽  
Vol 83 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Guiqing Zhao ◽  
Rui Yu ◽  
Jing Deng ◽  
Qiong Zhao ◽  
Yongchao Li ◽  
...  

2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document