Systemic and Mucosal Isotype-Specific Antibody Responses in Pigs to Experimental Influenza Virus Infection

2000 ◽  
Vol 13 (2) ◽  
pp. 237-247 ◽  
Author(s):  
P.P. HEINEN ◽  
A.P. van NIEUWSTADT ◽  
J.M.A. POL ◽  
E.A. de BOER-LUIJTZE ◽  
J.T. van OIRSCHOT ◽  
...  
2020 ◽  
Author(s):  
Minami Nagai ◽  
Miyu Moriyama ◽  
Takeshi Ichinohe

Abstract Background: Gut microbiota and these microbial-derived products play a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here, we examine whether nasal bacteria critically regulates the generation of influenza virus specific adaptive immune response after infection or intranasal vaccination. Results: We demonstrated that disruption of nasal bacteria by topical mucosal application of antibiotic enhances the virus-specific antibody responses to influenza virus infection. Although intranasal administration of hemagglutinin (HA) vaccine alone was insufficient to induce the HA-specific antibody responses, disruption of nasal bacteria by lysozyme or addition of culturable oral bacteria from a healthy human volunteer rescued inability of the nasal bacteria to generate antibody responses to intranasally administered split-virus vaccines. Myd88-depdnent signaling in the hematopoietic compartment was required for adjuvant activity of intranasally administered oral bacteria. In addition, we found that the oral bacteria-combined intranasal vaccine induced protective antibody response to influenza virus and SARS-CoV-2 infection.Conclusion: We show for the first time that disruption of nasal bacteria enhances protective immune responses to influenza virus and SARS-CoV-2 infection. Our findings here have identified a previously unappreciated role for nasal bacteria in the induction of the virus-specific adaptive immune responses.


2010 ◽  
Vol 65 (5-6) ◽  
pp. 419-428 ◽  
Author(s):  
Julia Serkedjieva ◽  
Tsvetanka Stefanova ◽  
Ekaterina Krumova

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMØ) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Brenda L. Tesini ◽  
Preshetha Kanagaiah ◽  
Jiong Wang ◽  
Megan Hahn ◽  
Jessica L. Halliley ◽  
...  

ABSTRACTMemory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection “imprints” for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCERapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


2010 ◽  
Vol 200 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Nadine Wiesener ◽  
Christin Zimmer ◽  
Nadine Jarasch-Althof ◽  
Peter Wutzler ◽  
Andreas Henke

Thorax ◽  
2018 ◽  
Vol 74 (3) ◽  
pp. 305-308 ◽  
Author(s):  
Qin Luo ◽  
Xingxing Yan ◽  
Hongmei Tu ◽  
Yibing Yin ◽  
Ju Cao

Progranulin (PGRN) exerts multiple functions in various inflammatory diseases. However, the role of PGRN in the pathogenesis of virus infection is unknown. Here, we demonstrated that PGRN production was up-regulated in clinical and experimental influenza, which contributed to the deleterious inflammatory response after influenza virus infection in mice. PGRN-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced influx of neutrophils and monocytes/macrophages, release of cytokines and chemokines, and permeability of the alveolar–epithelial barrier without affecting viral clearance. Our findings suggest that PGRN exacerbates pulmonary immunopathology during influenza virus infection.


2020 ◽  
Vol 12 (573) ◽  
pp. eabd3601
Author(s):  
Haley L. Dugan ◽  
Jenna J. Guthmiller ◽  
Philip Arevalo ◽  
Min Huang ◽  
Yao-Qing Chen ◽  
...  

Humans are repeatedly exposed to variants of influenza virus throughout their lifetime. As a result, preexisting influenza-specific memory B cells can dominate the response after infection or vaccination. Memory B cells recalled by adulthood exposure are largely reactive to conserved viral epitopes present in childhood strains, posing unclear consequences on the ability of B cells to adapt to and neutralize newly emerged strains. We sought to investigate the impact of preexisting immunity on generation of protective antibody responses to conserved viral epitopes upon influenza virus infection and vaccination in humans. We accomplished this by characterizing monoclonal antibodies (mAbs) from plasmablasts, which are predominantly derived from preexisting memory B cells. We found that, whereas some influenza infection–induced mAbs bound conserved and neutralizing epitopes on the hemagglutinin (HA) stalk domain or neuraminidase, most of the mAbs elicited by infection targeted non-neutralizing epitopes on nucleoprotein and other unknown antigens. Furthermore, most infection-induced mAbs had equal or stronger affinity to childhood strains, indicating recall of memory B cells from childhood exposures. Vaccination-induced mAbs were similarly induced from past exposures and exhibited substantial breadth of viral binding, although, in contrast to infection-induced mAbs, they targeted neutralizing HA head epitopes. Last, cocktails of infection-induced mAbs displayed reduced protective ability in mice compared to vaccination-induced mAbs. These findings reveal that both preexisting immunity and exposure type shape protective antibody responses to conserved influenza virus epitopes in humans. Natural infection largely recalls cross-reactive memory B cells against non-neutralizing epitopes, whereas vaccination harnesses preexisting immunity to target protective HA epitopes.


Sign in / Sign up

Export Citation Format

Share Document