Topological invariance of the homology characters

1930 ◽  
pp. 72-114
Author(s):  
R Giménez Conejero ◽  
J J Nuño-Ballesteros

Abstract We show three basic properties of the image Milnor number µI(f) of a germ $f\colon(\mathbb{C}^{n},S)\rightarrow(\mathbb{C}^{n+1},0)$ with isolated instability. First, we show the conservation of the image Milnor number, from which one can deduce the upper semi-continuity and the topological invariance for families. Second, we prove the weak Mond’s conjecture, which states that µI(f) = 0 if and only if f is stable. Finally, we show a conjecture by Houston that any family $f_t\colon(\mathbb{C}^{n},S)\rightarrow(\mathbb{C}^{n+1},0)$ with $\mu_I(\,f_t)$ constant is excellent in Gaffney’s sense. For technical reasons, in the last two properties, we consider only the corank 1 case.


2019 ◽  
Vol 79 (8) ◽  
Author(s):  
R. Cartas-Fuentevilla ◽  
A. Escalante-Hernández ◽  
A. Herrera-Aguilar ◽  
R. Navarro-Perez

1995 ◽  
Vol 63 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Banwari Lal Sharma ◽  
Neeta Singh
Keyword(s):  

2015 ◽  
Vol 29 (24) ◽  
pp. 1550135
Author(s):  
Paul Bracken

It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.


1989 ◽  
Vol 03 (12) ◽  
pp. 1965-1995 ◽  
Author(s):  
Eduardo Fradkin

I consider a gas of “free” anyons with statistical paremeter δ on a two dimensional lattice. Using a recently derived Jordan-Wigner transformation, I map this problem onto a gas of fermions on a lattice coupled to a Chern-Simons gauge theory with coupling [Formula: see text]. I show that if [Formula: see text] and the density [Formula: see text], with r and q integers, the system is a superfluid. If q is even and the system is half filled the state may be either a superfluid or a Quantum Hall System depending on the dynamics. Similar conclusions apply for other values of ρ and δ. The dynamical stability of the Fetter-Hanna-Laughlin goldstone mode is insured by the topological invariance of the quantized Hall conductance of the fermion problem. This leads to the conclusion that anyon gases are generally superfluids or quantum Hall systems.


1988 ◽  
Vol 79 (1) ◽  
pp. 91-102 ◽  
Author(s):  
F Gesztesy ◽  
B Simon

Sign in / Sign up

Export Citation Format

Share Document