Eulerian polynomials and Quasi-Birth-Death processes with time-varying-periodic rates

Author(s):  
Barbara Margolius

A Quasi-Birth-Death (QBD) process is a stochastic process with a two dimensional state space, a level and a phase. An ergodic QBD with time-varying periodic transition rates will tend to an asymptotic periodic solution as time tends to infinity . Such QBDs are also asymptotically geometric. That is, as the level tends to infinity, the probability of the system being in state ( k , j ) (k,j) at time t t within the period tends to an expression of the form f j ( t ) α − k Π j ( k ) f_j(t)\alpha ^{-k}\Pi _j(k) where α \alpha is the smallest root of the determinant of a generating function related to the generating function for the unbounded (in the level) process, Π j ( k ) \Pi _j(k) is a polynomial in k k , the level, that may depend on j j , the phase of the process, and f j ( t ) f_j(t) is a periodic function of time within the period which may also depend on the phase. These solutions are analogous to steady state solutions for QBDs with constant transition rates. If the time within the period is considered to be part of the state of the process, then they are steady-state solutions. In this paper, we consider the example of a two-priority queueing process with finite buffer for class-2 customers. For this example, we provide explicit results up to an integral in terms of the idle probability of the queue. We also use this asymptotic approach to provide exact solutions (up to an integral equation involving the probability the system is in level zero) for some of the level probabilities.

Author(s):  
Igor Korotyeyev

Purpose The purpose of this paper is to introduce a method for the analysis of steady-state processes in periodically time varying circuits. The method is based on a new definition of frequency responses for periodic time-varying circuits. Design/methodology/approach Processes in inverter circuits are often described by differential equations with periodically variable coefficients and forcing functions. To obtain a steady-state periodic solution, the expansion of differential equations into a domain of two independent variables of time is made. To obtain differential equations with constant coefficients the Lyapunov transformation is applied. The two-dimensional Laplace transform is used to find a steady-state solution. The steady-state solution is obtained in the form of the double Fourier series. The transfer function and frequency responses for the inverter circuit are introduced. Findings A set of frequency characteristics are defined. An example of a boost inverter is considered, and a set of frequency responses for voltage and current are presented. These responses show a resonance that is missed if the averaged state-space method is used. Originality/value A new definition of frequency responses is presented. On the basis of frequency responses, a modulation strategy and filters can be chosen to improve currents and voltages.


Author(s):  
Igor Korotyeyev

Purpose The purpose of this paper is to present the Galerkin method for analysis of steady-state processes in periodically time-varying circuits. Design/methodology/approach A converter circuit working on a time-varying load is often controlled by different signals. In the case of incommensurable frequencies, one can find a steady-state process only via calculation of a transient process. As the obtained results will not be periodical, one must repeat this procedure to calculate the steady-state process on a different time interval. The proposed methodology is based on the expansion of ordinary differential equations with one time variable into a domain of two independent variables of time. In this case, the steady-state process will be periodical. This process is calculated by the use of the Galerkin method with bases and weight functions in the form of the double Fourier series. Findings Expansion of differential equations and use of the Galerkin method enable discovery of the steady-state processes in converter circuits. Steady-state processes in the circuits of buck and boost converters are calculated and results are compared with numerical and generalized state-space averaging methods. Originality/value The Galerkin method is used to find a steady-state process in a converter circuit with a time-varying load. Processes in such a load depend on two incommensurable signals. The state-space averaging method is generalized for extended differential equations. A balance of active power for extended equations is shown.


Author(s):  
Tadeusz Sobczyk ◽  
Michał Radzik ◽  
Jarosław Tulicki

Purpose This paper aims to omit the difficulties of directly finding the periodic steady-state solutions for electromagnetic devices described by circuit models. Design/methodology/approach Determine the discrete integral operator of periodic functions and develop an iterative algorithm determining steady-state solutions by a multiplication of matrices only. Findings An alternative method to creating finite-difference relations directly determining steady-state solutions in the time domain. Research limitations/implications Reduction of software and hardware requirements for determining steady-states of electromagnetic. Practical implications A unified approach for directly finding steady-state solutions for ordinary nonlinear differential equations presented in the normal form. Originality/value Eliminate the necessity of solving high-order finite-difference equations for steady-state analysis of electromagnetic devices described by circuit models.


2019 ◽  
Vol 39 (2) ◽  
pp. 262-271
Author(s):  
Yukan Hou ◽  
Yuan Li ◽  
Yuntian Ge ◽  
Jie Zhang ◽  
Shoushan Jiang

Purpose The purpose of this paper is to present an analytical method for throughput analysis of assembly systems with complex structures during transients. Design/methodology/approach Among the existing studies on the performance evaluation of assembly systems, most focus on the system performance in steady state. Inspired by the transient analysis of serial production lines, the state transition matrix is derived considering the characteristics of merging structure in assembly systems. The system behavior during transients is described by an ergodic Markov chain, with the states being the occupancy of all buffers. The dynamic model for the throughput analysis is solved using the fixed-point theory. Findings This method can be used to predict and evaluate the throughput performance of assembly systems in both transient and steady state. By comparing the model calculation results with the simulation results, this method is proved to be accurate. Originality/value This proposed modeling method can depict the throughput performance of assembly systems in both transient and steady state, whereas most exiting methods can be used for only steady-state analysis. In addition, this method shows the potential for the analysis of complex structured assembly systems owing to the low computational complexity.


Sign in / Sign up

Export Citation Format

Share Document