2021 ◽  
Vol 22 (14) ◽  
pp. 7704
Author(s):  
Sayi’Mone Tati ◽  
Laleh Alisaraie

Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus end of the microtubules. The motor domain of dynein possesses a hexameric head, where ATP hydrolysis occurs. The presented work analyzes the structure–activity relationship (SAR) of dynapyrazole A and B, as well as ciliobrevin A and D, in their various protonated states and their 46 analogues for their binding in the AAA1 subunit, the leading ATP hydrolytic site of the motor domain. This study exploits in silico methods to look at the analogues’ effects on the functionally essential subsites of the motor domain of dynein 1, since no similar experimental structural data are available. Ciliobrevin and its analogues bind to the ATP motifs of the AAA1, namely, the walker-A (W-A) or P-loop, the walker-B (W-B), and the sensor I and II. Ciliobrevin A shows a better binding affinity than its D analogue. Although the double bond in ciliobrevin A and D was expected to decrease the ligand potency, they show a better affinity to the AAA1 binding site than dynapyrazole A and B, lacking the bond. In addition, protonation of the nitrogen atom in ciliobrevin A and D, as well as dynapyrazole A and B, at the N9 site of ciliobrevin and the N7 of the latter increased their binding affinity. Exploring ciliobrevin A geometrical configuration suggests the E isomer has a superior binding profile over the Z due to binding at the critical ATP motifs. Utilizing the refined structure of the motor domain obtained through protein conformational search in this study exhibits that Arg1852 of the yeast cytoplasmic dynein could involve in the “glutamate switch” mechanism in cytoplasmic dynein 1 in lieu of the conserved Asn in AAA+ protein family.


2019 ◽  
Vol 31 (3) ◽  
pp. 861-875 ◽  
Author(s):  
Adebayo A. Adeniyi ◽  
Cecilia O. Akintayo ◽  
Emmanuel T. Akintayo ◽  
Jeanet Conradie

1994 ◽  
Vol 238 (3) ◽  
pp. 455-465 ◽  
Author(s):  
M. Zacharias ◽  
B.A. Luty ◽  
M.E. Davis ◽  
J.A. McCammon

ChemViews ◽  
2018 ◽  
Author(s):  
Ruben Ragg ◽  
Katrina Forest
Keyword(s):  

2017 ◽  
Author(s):  
Pedro A. G. Tizei ◽  
Emma Harris ◽  
Marleen Renders ◽  
Vitor B. Pinheiro

AbstractInsertions and deletions (indels) are known to affect function, biophysical properties and substrate specificity of enzymes, and they play a central role in evolution. Despite such clear significance, this class of mutation remains an underexploited tool in protein engineering with no available platforms capable of systematically generating or analysing libraries of varying sequence composition and length. We present a novel DNA assembly platform (InDel assembly), based on cycles of endonuclease restriction and ligation of standardised dsDNA building blocks, that can generate libraries exploring both composition and sequence length variation. In addition, we developed a framework to analyse the output of selection from InDel-generated libraries, combining next generation sequencing and alignment-free strategies for sequence analysis. We demonstrate the approach by engineering the well-characterized TEM-1 β-lactamase Ω-loop, involved in substrate specificity, identifying multiple novel extended spectrum β-lactamases with loops of modified length and composition areas of the sequence space not previously explored. Together, the InDel assembly and analysis platforms provide an efficient route to engineer protein loops or linkers where sequence length and composition are both essential functional parameters.


Sign in / Sign up

Export Citation Format

Share Document