scholarly journals On the error term in an asymptotic formula for the symmetric square $L$-function

2003 ◽  
Vol 132 (2) ◽  
pp. 317-323
Author(s):  
Yuk-Kam Lau
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


Author(s):  
L. Mirsky

I. Throughout this paper k1, …, k3 will denote s ≥ I fixed distinct positive integers. Some years ago Pillai (1936) found an asymptotic formula, with error term O(x/log x), for the number of positive integers n ≤ x such that n + k1, …, n + k3 are all square-free. I recently considered (Mirsky, 1947) the corresponding problem for r-free integers (i.e. integers not divisible by the rth power of any prime), and was able, in particular, to reduce the error term in Pillai's formula.Our present object is to discuss various generalizations and extensions of Pillai's problem. In all investigations below we shall be concerned with a set A of integers. This is any given, finite or infinite, set of integers greater than 1 and subject to certain additional restrictions which will be stated later. The elements of A will be called a-numbers, and the letter a will be reserved for them. A number which is not divisible by any a-number will be called A-free, and our main concern will be with the study of A-free numbers. Their additive properties have recently been investigated elsewhere (Mirsky, 1948), and some estimates obtained in that investigation will be quoted in the present paper.


2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.


2000 ◽  
Vol 43 (2) ◽  
pp. 309-323 ◽  
Author(s):  
Manfred Kühleitner ◽  
Werner Georg Nowak

AbstractIn this article we consider sums S(t) = Σnψ (tf(n/t)), where ψ denotes, essentially, the fractional part minus ½ f is a C4-function with f″ non-vanishing, and summation is extended over an interval of order t. For the mean-square of S(t), an asymptotic formula is established. If f is algebraic this can be sharpened by the indication of an error term.


2020 ◽  
pp. 1-34
Author(s):  
Jiawei Lin ◽  
Greg Martin

Abstract Let $a_1$ , $a_2$ , and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$ . We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$ . The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.


1985 ◽  
Vol 98 ◽  
pp. 37-42 ◽  
Author(s):  
Kohji Matsumoto

Let dk(n) be the number of the factorizations of n into k positive numbers. It is known that the following asymptotic formula holds: where r and q are co-prime integers with 0 < r < q, Pk is a polynomial of degree k − 1, φ(q) is the Euler function, and Δk(q; r) is the error term. (See Lavrik [3]).


2004 ◽  
Vol 2004 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Aleksandar Ivic

Several estimates for the convolution functionC [f(x)]:=∫1xf(y) f(x/y)(dy/y)and its iterates are obtained whenf(x)is a suitable number-theoretic error term. We deal with the case of the asymptotic formula for∫0T|ζ(1/2+it)|2kdt(k=1,2), the general Dirichlet divisor problem, the problem of nonisomorphic Abelian groups of given order, and the Rankin-Selberg convolution.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Mingxuan Zhong ◽  
Yuankui Ma

We obtain an asymptotic formula for the cube-full numbers in an arithmetic progression n ≡ l mod   q , where q , l = 1 . By extending the construction derived from Dirichlet’s hyperbola method and relying on Kloosterman-type exponential sum method, we improve the very recent error term with x 118 / 4029 < q .


Author(s):  
Jakob Streipel

We compute an asymptotic formula for the twisted moment of [Formula: see text] [Formula: see text]-functions and their derivatives. As an application, we prove that symmetric-square lifts of [Formula: see text] Maass forms are uniquely determined by the central values of the derivatives of [Formula: see text] [Formula: see text]-functions.


2021 ◽  
Vol 157 (12) ◽  
pp. 2585-2634
Author(s):  
Pratyush Sarkar ◽  
Dale Winter

The aim of this paper is to establish exponential mixing of frame flows for convex cocompact hyperbolic manifolds of arbitrary dimension with respect to the Bowen–Margulis–Sullivan measure. Some immediate applications include an asymptotic formula for matrix coefficients with an exponential error term as well as the exponential equidistribution of holonomy of closed geodesics. The main technical result is a spectral bound on transfer operators twisted by holonomy, which we obtain by building on Dolgopyat's method.


Sign in / Sign up

Export Citation Format

Share Document