scholarly journals A fourth-order finite-difference approximation for the fixed membrane eigenproblem

1971 ◽  
Vol 25 (114) ◽  
pp. 237-237 ◽  
Author(s):  
J. R. Kuttler
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Ren ◽  
Lei Liu

In this paper, a high-order compact finite difference method is proposed for a class of temporal fractional subdiffusion equation. A numerical scheme for the equation has been derived to obtain 2-α in time and fourth-order in space. We improve the results by constructing a compact scheme of second-order in time while keeping fourth-order in space. Based on the L2-1σ approximation formula and a fourth-order compact finite difference approximation, the stability of the constructed scheme and its convergence of second-order in time and fourth-order in space are rigorously proved using a discrete energy analysis method. Applications using two model problems demonstrate the theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Ren

In this paper, we propose an efficient compact finite difference method for a class of time-fractional subdiffusion equations with spatially variable coefficients. Based on the L2-1σ approximation formula of the time-fractional derivative and a fourth-order compact finite difference approximation to the spatial derivative, an efficient compact finite difference method is developed. The local truncation error and the solvability of the developed method are discussed in detail. The unconditional stability of the resulting scheme and also its convergence of second-order in time and fourth-order in space are rigorously proved using a discrete energy analysis method. Numerical examples are provided to demonstrate the accuracy and the theoretical results.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Sign in / Sign up

Export Citation Format

Share Document