Decomposition of a direct product of irreducible representations of a semisimple lie algebra into a direct sum of irreducible representations

Author(s):  
A. U. Klimyk
1980 ◽  
Vol 3 (2) ◽  
pp. 247-253
Author(s):  
Taw Pin Lim

In a ringRwith involution whose symmetric elementsSare central, the skew-symmetric elementsKform a Lie algebra over the commutative ringS. The classification of such rings which are2-torsion free is equivalent to the classification of Lie algebrasKoverSequipped with a bilinear formfthat is symmetric, invariant and satisfies[[x,y],z]=f(y,z)x−f(z,x)y. IfSis a field of char≠2,f≠0anddimK>1thenKis a semisimple Lie algebra if and only iffis nondegenerate. Moreover, the derived algebraK′is either the pure quaternions overSor a direct sum of mutually orthogonal abelian Lie ideals ofdim≤2.


2021 ◽  
Vol 32 (1) ◽  
pp. 9-32
Author(s):  
C. Choi ◽  
◽  
S. Kim ◽  
H. Seo ◽  
◽  
...  

We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grLn, we give some explicit constructions of weight multiplicity-free irreducible representations of gl(n).


10.37236/1135 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
L. Wyatt Alverson II ◽  
Robert G. Donnelly ◽  
Scott J. Lewis ◽  
Robert Pervine

We associate one or two posets (which we call "semistandard posets") to any given irreducible representation of a rank two semisimple Lie algebra over ${\Bbb C}$. Elsewhere we have shown how the distributive lattices of order ideals taken from semistandard posets (we call these "semistandard lattices") can be used to obtain certain information about these irreducible representations. Here we show that some of these semistandard lattices can be used to present explicit actions of Lie algebra generators on weight bases (Theorem 5.1), which implies these particular semistandard lattices are supporting graphs. Our descriptions of these actions are explicit in the sense that relative to the bases obtained, the entries for the representing matrices of certain Lie algebra generators are rational coefficients we assign in pairs to the lattice edges. In Theorem 4.4 we show that if such coefficients can be assigned to the edges, then the assignment is unique up to products; we conclude that the associated weight bases enjoy certain uniqueness and extremal properties (the "solitary" and "edge-minimal" properties respectively). Our proof of this result is uniform and combinatorial in that it depends only on certain properties possessed by all semistandard posets. For certain families of semistandard lattices some of these results were obtained in previous papers; in Proposition 5.6 we explicitly construct new weight bases for a certain family of rank two symplectic representations. These results are used to help obtain in Theorem 5.1 the classification of those semistandard lattices which are supporting graphs.


Author(s):  
Charles LeBarron Alley

Abstract We study the monodromy of meromorphic cyclic $\textrm{SL}(n,{\mathbb{C}})$-opers on the Riemann sphere with a single pole. We prove that the monodromy map, sending such an oper to its Stokes data, is an immersion in the case where the order of the pole is a multiple of $n$. To do this, we develop a method based on the work of Jimbo, Miwa, and Ueno from the theory of isomonodromic deformations. Specifically, we introduce a system of equations that is equivalent to the isomonodromy equations of Jimbo–Miwa–Ueno, but which is adapted to the decomposition of the Lie algebra $\mathfrak{sl}(n,\mathbb{C})$ as a direct sum of irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$. Using properties of some structure constants for $\mathfrak{sl}(n,\mathbb{C})$ to analyze this system of equations, we show that deformations of certain families of cyclic $\textrm{SL}(n,\mathbb{C})$-opers on the Riemann sphere with a single pole are never infinitesimally isomonodromic.


2004 ◽  
Vol 19 (35) ◽  
pp. 2619-2628 ◽  
Author(s):  
A. CHENAGHLOU ◽  
H. FAKHRI

Using the realization idea of simultaneous shape invariance with respect to two different parameters of the associated Legendre functions, the Hilbert space of spherical harmonics Yn m(θ,φ) corresponding to the motion of a free particle on a sphere is split into a direct sum of infinite-dimensional Hilbert subspaces. It is shown that these Hilbert subspaces constitute irreducible representations for the Lie algebra u (1,1). Then by applying the lowering operator of the Lie algebra u (1,1), Barut–Girardello coherent states are constructed for the Hilbert subspaces consisting of Ym m(θ,φ) and Ym+1 m(θ,φ).


1997 ◽  
Vol 49 (1) ◽  
pp. 133-159 ◽  
Author(s):  
Mark Reeder

AbstractExterior powers of the adjoint representation of a complex semisimple Lie algebra are decomposed into irreducible representations, to varying degrees of satisfaction.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


2001 ◽  
Vol 64 (1) ◽  
pp. 71-79 ◽  
Author(s):  
P. Schultz

G is reduced torsion-free A belian group such that for every direct sum ⊕G of copies of G, Ext(⊕G, ⊕G) = 0 if and only if G is a free module over a rank 1 ring. For every direct product ΠG of copies of G, Ext(ΠG,ΠG) = 0 if and only if G is cotorsion.This paper began as a Research Report of the Department of Mathematics of the University of Western Australia in 1988, and circulated among members of the Abelian group community. However, it was never submitted for publication. The results have been cited, widely, and since copies of the original research report are no longer available, the paper is presented here in its original form in Sections 1 to 5. In Section 6, I survey the progress that has been made in the topic since 1988.


Sign in / Sign up

Export Citation Format

Share Document