soilborne viruses
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 948-954 ◽  
Author(s):  
Yu Xu ◽  
Lifeng Hu ◽  
Linying Li ◽  
Yan Zhang ◽  
Bingjian Sun ◽  
...  

Polymyxa graminis is an obligate parasite and important vector of more than 14 soilborne plant viruses that pose a significant threat to cereal crops in Europe, North America, and Asia. Different ribotypes or formae speciales of P. graminis have been recognized and these may be associated with different cereal hosts or with transmission of different viruses. Two soilborne viruses infecting winter wheat in China have been reported and well studied (Wheat yellow mosaic virus [WYMV, genus Bymovirus] and Chinese wheat mosaic virus [CWMV, genus Furovirus]) but there has been no reported characterization of P. graminis isolates associated with them. In this study, the ribosomal DNA internal transcribed spacer (ITS) regions of P. graminis were examined from 63 wheat samples with apparent virus symptoms obtained from 16 sites within six Chinese provinces. Their associations with soilborne viruses were investigated. Ribotype I (P. graminis f. sp. temperata) and ribotype II (P. graminis f. sp. tepida) were confirmed in winter wheat regions of China for the first time. All 63 wheat root samples were infected with ribotype I of P. graminis and 11 were also infected with ribotype II. There was no obvious association between the ribotypes and infection by either WYMV or CWMV (or double infection). Phylogenetic analysis of the P. graminis ITS1-5.8S-ITS2 sequences revealed that ribotype I in China belongs to previously reported subgroup Ib, whereas ribotype II belongs to IIa. There was considerable sequence variation (pairwise distances from 0.0219 to 0.0319) between Chinese ribotype I isolates of different regions and previously reported ribotype I isolate Ken5 (accession number HE860055.1).


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 21-24 ◽  
Author(s):  
Magali González-Vázquez ◽  
Julián Ayala ◽  
Fernando García-Arenal ◽  
Aurora Fraile

In a survey of soilborne viruses infecting sugar beet in central Spain, Beet black scorch virus (BBSV) was detected in field grown sugar beets with symptoms of rhizomania disease. BBSV was found in all analyzed sugar beet producing regions from central Spain, as well as in bait plants grown in soils with a history of rhizomania from several Western European countries, thereby constituting the first report of BBSV in Europe. BBSV was transferred to Chenopodium quinoa, where it caused chlorotic local lesions from which virus particles were purified. The nucleotide sequence of the 3′-untranslated region of the genomic RNA was determined for 13 European isolates, and sequences were highly similar to those reported for Chinese and U.S. isolates. Sequence comparisons revealed three clusters of sequences, one including most European isolates, one including one European and two Chinese isolates, and the third including the U.S. isolate. BBSV was detected in a number of samples with rhizomania symptoms in which Beet necrotic yellow vein virus went undetected. However, its role in rhizomania disease in Europe, if any, remains to be established.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 112-112 ◽  
Author(s):  
N. Borodynko ◽  
B. Hasiów ◽  
H. Pospieszny

Beet necrotic yellow vein virus (BNYVV), the casual agent of rhizomania disease, was identified in sugar beet plants from several fields in the Wielkopolska Region of Poland (1). In greenhouse studies, sugar beets were grown in the soil from one of these fields to bait soilborne viruses. Of 200 sugar beet plants, three developed symptoms of vein clearing, vein banding, and mosaic. Crude sap from symptomatic plants was used for mechanical inoculation of various plants species. In Chenopodium quinoa, C. amaranticolor, and Tetragonia expansa only local lesions were observed. Electron microscope examination of negatively stained leaf-dip preparations from symptomatic sugar beet plants showed a mixture of rod-shape particles from 70 to 400 nm long. Using double-antibody sandwich enzyme-linked immunosorbent assay tests, two symptomatic sugar beet plants gave positive reactions with antiserum against BNYVV (Bio-Rad, Hercules, CA) and a third plant gave a positive reaction with antisera against BNYVV and Beet soilborne virus (BSBV). Total RNA was extracted from roots and leaves of the symptomatic plants and used in a multiplex reverse transcription-polymerase chain reaction (mRT-PCR) assay. Specific primers were designed to amplify a fragment of the RNA1 for BSBV and RNA2 for BNYVV and Beet virus Q (BVQ) (2). Two mRT-PCR products amplified with the primers specific to BNYVV and BSBV were obtained and sequenced. A 274-nt amplicon sequence (GenBank Accession No. DQ012156) had 98% nucleotide sequence identity with the German BNYVV isolate F75 (GenBank Accession No. AF19754) and a 376-nt amplicon sequence (GenBank Accession No. AY999690) had 98% nucleotide and 98% amino acid sequence identity with the German BSBV isolate (GenBank Accession No. Z97873). The Polish BSBV isolate had 88% nucleotide and 62% amino acid sequence identity with BVQ, another pomovirus (GenBank Accession No. AJ 223596 formerly known as serotype Wierthe of BSBV (2). In 2005, mRT-PCR was used on samples collected from two fields of the Wielkopolska Region. Of 15 tested sugar beet plants, 12 gave positive reactions with primers specific for BSBV and nine with primers specific to BNYVV. To our knowledge, this is first report of BSBV in Poland. In Europe, BSBV was previously reported in England, the Netherlands, Belgium, Sweden, Germany, France, and Finland (2,3). References: (1) M. Jezewska and J. Piszczek. Phytopathol. Polonica, 21:165, 2001. (2) A. Maunier et al. Appl. Environ. Microbiol. 69:2356, 2003. (3) C. M. Rush and G. B. Heidel. Plant Dis. 79:868, 1995.


2005 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
L. Cadle-Davidson ◽  
G. C. Bergstrom ◽  
T. S. Cox

Perennial small grains offer the potential for sustainable production of forage and grain on marginal and erodable lands. The authors' results suggest that perennial small grains are at risk for infection by Soilborne wheat mosaic virus (SBWMV) and Wheat spindle streak mosaic virus (WSSMV) and that resistant cultivars may be needed for management of these diseases. Ideally, breeders should screen perennial small grain lines for resistance to soilborne viruses in the early stages of selection. Accepted for publication 27 October 2005. Published 30 November 2005.


2003 ◽  
Vol 69 (4) ◽  
pp. 2356-2360 ◽  
Author(s):  
Alexandre Meunier ◽  
Jean-François Schmit ◽  
Arnaud Stas ◽  
Nazli Kutluk ◽  
Claude Bragard

ABSTRACT Three soilborne viruses transmitted by Polymyxa betae KESKIN in sugar beet have been described: Beet necrotic yellow vein virus (BNYVV), the agent of rhizomania, Beet soilborne virus (BSBV), and Beet virus Q (BVQ). A multiplex reverse transcription-PCR technique was developed to simultaneously detect BNYVV, BSBV, and BVQ, together with their vector, P. betae. The detection threshold of the test was up to 128 times greater than that of an enzyme-linked immunosorbent assay. Systematic association of BNYVV with one or two different pomoviruses was observed. BVQ was detected in samples from Belgium, Bulgaria, France, Germany, Hungary, Italy, Sweden, and The Netherlands but not in samples from Turkey.


Plant Disease ◽  
2001 ◽  
Vol 85 (12) ◽  
pp. 1288-1288 ◽  
Author(s):  
A. Stas ◽  
A. Meunier ◽  
J.-F. Schmit ◽  
C. Bragard

Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania disease on sugar beet, has been reported in Belgium for more than 16 years. Other soilborne viruses belonging to the genus Pomovirus, such as Beet soilborne virus (BSBV) (3) and Beet virus Q (BVQ) (1), are suspected pathogens of sugar beets grown in Belgium. During the 2000 growing season, more than 20 fields showing rhizomania-like and yellowing symptoms on sugar beet leaves were investigated for the presence of BVQ, BNYVV, and BSBV. All samples were checked by enzyme-linked immunosorbent assay (ELISA) using commercial BNYVV (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France) and BSBV/BVQ (DSMZ, Braunschweig, Germany - AS-0576 polyclonal, AS-0576/2 MAb) antisera. RNA was extracted from sugar beet rootlets using an RNeasy extraction kit (Qiagen, Hilden, Germany), before performing a reverse transcription-polymerase chain reaction (RT-PCR) using primers (5′-GCTGGAGTATATCACCGATGAC-3′ and 5′-AAAATC TCGGATAGCATCCAAC-3′) designed to specifically amplify a 510-bp region of BVQ RNA-1. The presence of BSBV and BNYVV was also checked by RT-PCR using previously described primers (1,2). The BVQ-derived PCR product was sequenced and proved to be more than 99% identical to the Wierthe BVQ isolate nucleotide sequence. Soil transmission of BVQ was demonstrated through a bioassay using soil dilutions with quartz and sugar beet cv. Cadyx as bait. After 6 weeks, BVQ was detected by RT-PCR in bait plants. The putative vector, Polymyxa betae, was identified by lactophenol-cotton blue staining of the roots followed by microscopic examination. BVQ produces irregularly shaped local lesions that appear ≈5 days after mechanical inoculation and tend to spread along veins. BVQ was detected in six fields located in the Polders Region and Brabant Province of Belgium. BVQ was always found in sugar beet samples coinfected with BNYVV and BSBV. The economic significance of BVQ and its interaction with other viruses is not known. References: (1) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (2) M. Saito et al. Arch. Virol. 141:2163, 1996. (3) M. Verhoyen and M. Van den Bossche. Parasitica. 44:71, 1987.


Sign in / Sign up

Export Citation Format

Share Document