scholarly journals Complete Cytolysis and Neonatal Lethality in Keratin 5 Knockout Mice Reveal Its Fundamental Role in Skin Integrity and in Epidermolysis Bullosa Simplex

2001 ◽  
Vol 12 (6) ◽  
pp. 1775-1789 ◽  
Author(s):  
Bettina Peters ◽  
Jutta Kirfel ◽  
Heinrich Büssow ◽  
Miguel Vidal ◽  
Thomas M. Magin

In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5− / − mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14− / −mice. In contrast to the K14− / −mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5− / − mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.

2015 ◽  
Vol 10 (6) ◽  
pp. 2432-2436
Author(s):  
JIAJIA GAO ◽  
XUEBIN WANG ◽  
FANG ZHENG ◽  
SUFANG DONG ◽  
XUEPING QIU

2003 ◽  
Vol 21 (4) ◽  
pp. 447-447 ◽  
Author(s):  
Petra H.L. Schuilenga-Hut ◽  
Pieter v.d. Vlies ◽  
Marcel F. Jonkman ◽  
Esm� Waanders ◽  
Charles H.C.M. Buys ◽  
...  

1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


2019 ◽  
Vol 36 (6) ◽  
pp. 1007-1009 ◽  
Author(s):  
Sarah E. Sheppard ◽  
Laura Elizabeth Anderson ◽  
Cathryn Sibbald ◽  
Colleen Cotton ◽  
Elizabeth Bhoj ◽  
...  

1995 ◽  
Vol 4 (10) ◽  
pp. 1999-2000 ◽  
Author(s):  
Masato Matsuki ◽  
Kohji Hashimoto ◽  
Kunihlko Yoshikawa ◽  
Hirokazu Yasuno ◽  
Kiyofuml Yamanishi

2013 ◽  
Vol 39 (1) ◽  
pp. 80-81 ◽  
Author(s):  
M. Jantke ◽  
C. Has ◽  
H. A. Haenssle ◽  
M. P. Schön ◽  
S. Emmert

2021 ◽  
Vol 8 ◽  
Author(s):  
An Liu ◽  
Wenyuan Shi ◽  
Dongdong Lin ◽  
Haihui Ye

C-type allatostatins (C-type ASTs) are a family of structurally related neuropeptides found in a wide range of insects and crustaceans. To date, the C-type allatostatin receptor in crustaceans has not been deorphaned, and little is known about its physiological functions. In this study, we aimed to functionally define a C-type ASTs receptor in the mud crab, Scylla paramamosian. We showed that C-type ASTs receptor can be activated by ScypaAST-C peptide in a dose-independent manner and by ScypaAST-CCC peptide in a dose-dependent manner with an IC50 value of 6.683 nM. Subsequently, in vivo and in vitro experiments were performed to investigate the potential roles of ScypaAST-C and ScypaAST-CCC peptides in the regulation of ecdysone (20E) and methyl farnesoate (MF) biosynthesis. The results indicated that ScypaAST-C inhibited biosynthesis of 20E in the Y-organ, whereas ScypaAST-CCC had no effect on the production of 20E. In addition, qRT-PCR showed that both ScypaAST-C and ScypaAST-CCC significantly decreased the level of expression of the MF biosynthetic enzyme gene in the mandibular organ, suggesting that the two neuropeptides have a negative effect on the MF biosynthesis in mandibular organs. In conclusion, this study provided new insight into the physiological roles of AST-C in inhibiting ecdysone biosynthesis. Furthermore, it was revealed that AST-C family peptides might inhibit MF biosynthesis in crustaceans.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Holly R. Chinnery ◽  
Kate E. Keller

Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.


Sign in / Sign up

Export Citation Format

Share Document