scholarly journals Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role.

1995 ◽  
Vol 6 (9) ◽  
pp. 1125-1143 ◽  
Author(s):  
G P Cereghino ◽  
D P Atencio ◽  
M Saghbini ◽  
J Beiner ◽  
I E Scheffler

We have demonstrated previously that glucose repression of mitochondrial biogenesis in Saccharomyces cerevisiae involves the control of the turnover of mRNAs for the iron protein (Ip) and flavoprotein (Fp) subunits of succinate dehydrogenase (SDH). Their half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and < 5 min in glucose (YPD medium). This is a rare example in yeast in which the half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and < 5 min in glucose (YPD medium). This is a rare example in yeast in which the half-life of an mRNA can be controlled by manipulating external conditions. In our current studies, a series of Ip transcripts with internal deletions as well as chimeric transcripts with heterologous sequences (internally or at the ends) have been examined, and we established that the 5'-untranslated region (5' UTR) of the Ip mRNA contains a major determinant controlling its differential turnover in YPG and YPD. Furthermore, the 5' exonuclease encoded by the XRN1 gene is required for the rapid degradation of the Ip and Fp mRNAs upon the addition of glucose. In the presence of cycloheximide the nucleolytic degradation of the Ip mRNA can be slowed down by stalled ribosomes to allow the identification of intermediates. Such intermediates have lost their 5' ends but still retain their 3' UTRs. If protein synthesis is inhibited at an early initiation step by the use of a prt1 mutation (affecting the initiation factor eIF3), the Ip and Fp mRNAs are very rapidly degraded even in YPG. Significantly, the arrest of translation by the introduction of a stable hairpin loop just upstream of the initiation codon does not alter the differential stability of the transcript in YPG and YPD. These observations suggest that a signaling pathway exists in which the external carbon source can control the turnover of mRNAs of specific mitochondrial proteins. Factors must be present that control either the activity or more likely the access of a nuclease to the select mRNAs. As a result, we propose that a competition between initiation of translation and nuclease action at the 5' end of the transcript determines the half-life of the Ip mRNA.

1992 ◽  
Vol 12 (7) ◽  
pp. 2941-2948
Author(s):  
A Lombardo ◽  
G P Cereghino ◽  
I E Scheffler

We have examined the expression of the gene encoding the iron-protein subunit (Ip) of succinate dehydrogenase in Saccharomyces cerevisiae. The gene had been cloned by us and shown to be subject to glucose regulation (A. Lombardo, K. Carine, and I. E. Scheffler, J. Biol. Chem. 265:10419-10423, 1990). We discovered that a significant part of the regulation of the Ip mRNA levels by glucose involves the regulation of the turnover rate of this mRNA. In the presence of glucose, the half-life appears to be less than 5 min, while in glycerol medium, the half-life is greater than 60 min. The gene is also regulated transcriptionally by glucose. The upstream promoter sequence appeared to have four regulatory elements with consensus sequences shown to be responsible for the interaction with the HAP2/3/4 regulatory complex. A deletion analysis has shown that the two distal elements are redundant. These measurements were carried out by Northern (RNA) analyses of Ip mRNA transcripts as well as by assays of beta-galactosidase activity in cells carrying constructs of the Ip promoter linked to the lacZ coding sequence. These observations on the regulation of mRNA stability were also extended to the mRNA of the flavoprotein subunit of succinate dehydrogenase and in some experiments of iso-1-cytochrome c.


1992 ◽  
Vol 12 (7) ◽  
pp. 2941-2948 ◽  
Author(s):  
A Lombardo ◽  
G P Cereghino ◽  
I E Scheffler

We have examined the expression of the gene encoding the iron-protein subunit (Ip) of succinate dehydrogenase in Saccharomyces cerevisiae. The gene had been cloned by us and shown to be subject to glucose regulation (A. Lombardo, K. Carine, and I. E. Scheffler, J. Biol. Chem. 265:10419-10423, 1990). We discovered that a significant part of the regulation of the Ip mRNA levels by glucose involves the regulation of the turnover rate of this mRNA. In the presence of glucose, the half-life appears to be less than 5 min, while in glycerol medium, the half-life is greater than 60 min. The gene is also regulated transcriptionally by glucose. The upstream promoter sequence appeared to have four regulatory elements with consensus sequences shown to be responsible for the interaction with the HAP2/3/4 regulatory complex. A deletion analysis has shown that the two distal elements are redundant. These measurements were carried out by Northern (RNA) analyses of Ip mRNA transcripts as well as by assays of beta-galactosidase activity in cells carrying constructs of the Ip promoter linked to the lacZ coding sequence. These observations on the regulation of mRNA stability were also extended to the mRNA of the flavoprotein subunit of succinate dehydrogenase and in some experiments of iso-1-cytochrome c.


1992 ◽  
Vol 12 (9) ◽  
pp. 4197-4208
Author(s):  
S Silve ◽  
P R Rhode ◽  
B Coll ◽  
J Campbell ◽  
R O Poyton

Previously, we have shown that the Saccharomyces cerevisiae DNA-binding protein ABF1 exists in at least two different electrophoretic forms (K. S. Sweder, P. R. Rhode, and J. L. Campbell, J. Biol. Chem. 263: 17270-17277, 1988). In this report, we show that these forms represent different states of phosphorylation of ABF1 and that at least four different phosphorylation states can be resolved electrophoretically. The ratios of these states to one another differ according to growth conditions and carbon source. Phosphorylation of ABF1 is therefore a regulated process. In nitrogen-starved cells or in cells grown on nonfermentable carbon sources (e.g., lactate), phosphorylated forms predominate, while in cells grown on fermentable carbon sources (e.g., glucose), dephosphorylated forms are enriched. The phosphorylation pattern is affected by mutations in the SNF1-SSN6 pathway, which is involved in glucose repression-depression. Whereas a functional SNF1 gene, which encodes a protein kinase, is not required for the phosphorylation of ABF1, a functional SSN6 gene is required for itsd ephosphorylation. The phosphorylation patterns that we have observed correlate with the regulation of a specific target gene, COX6, which encodes subunit VI of cytochrome c oxidase. Transcription of COX6 is repressed by growth in medium containing a fermentable carbon source and is derepressed by growth in medium containing a nonfermentable carbon source. COX6 repression-derepression is under the control of the SNF1-SSN6 pathway. This carbon source regulation is exerted through domain 1, a region of the upstream activation sequence UAS6 that binds ABF1 (J. D. Trawick, N. Kraut, F. Simon, and R. O. Poyton, Mol. Cell Biol. 12:2302-2314, 1992). We show that the greater the phosphorylation of ABF1, the greater the transcription of COX6. Furthermore, the ABF1-containing protein-DNA complexes formed at domain 1 differ according to the phosphorylation state of ABF1 and the carbon source on which the cells were grown. From these findings, we propose that the phosphorylation of ABF1 is involved in glucose repression-derepression of COX6 transcription.


1992 ◽  
Vol 12 (9) ◽  
pp. 4197-4208 ◽  
Author(s):  
S Silve ◽  
P R Rhode ◽  
B Coll ◽  
J Campbell ◽  
R O Poyton

Previously, we have shown that the Saccharomyces cerevisiae DNA-binding protein ABF1 exists in at least two different electrophoretic forms (K. S. Sweder, P. R. Rhode, and J. L. Campbell, J. Biol. Chem. 263: 17270-17277, 1988). In this report, we show that these forms represent different states of phosphorylation of ABF1 and that at least four different phosphorylation states can be resolved electrophoretically. The ratios of these states to one another differ according to growth conditions and carbon source. Phosphorylation of ABF1 is therefore a regulated process. In nitrogen-starved cells or in cells grown on nonfermentable carbon sources (e.g., lactate), phosphorylated forms predominate, while in cells grown on fermentable carbon sources (e.g., glucose), dephosphorylated forms are enriched. The phosphorylation pattern is affected by mutations in the SNF1-SSN6 pathway, which is involved in glucose repression-depression. Whereas a functional SNF1 gene, which encodes a protein kinase, is not required for the phosphorylation of ABF1, a functional SSN6 gene is required for itsd ephosphorylation. The phosphorylation patterns that we have observed correlate with the regulation of a specific target gene, COX6, which encodes subunit VI of cytochrome c oxidase. Transcription of COX6 is repressed by growth in medium containing a fermentable carbon source and is derepressed by growth in medium containing a nonfermentable carbon source. COX6 repression-derepression is under the control of the SNF1-SSN6 pathway. This carbon source regulation is exerted through domain 1, a region of the upstream activation sequence UAS6 that binds ABF1 (J. D. Trawick, N. Kraut, F. Simon, and R. O. Poyton, Mol. Cell Biol. 12:2302-2314, 1992). We show that the greater the phosphorylation of ABF1, the greater the transcription of COX6. Furthermore, the ABF1-containing protein-DNA complexes formed at domain 1 differ according to the phosphorylation state of ABF1 and the carbon source on which the cells were grown. From these findings, we propose that the phosphorylation of ABF1 is involved in glucose repression-derepression of COX6 transcription.


1986 ◽  
Vol 6 (6) ◽  
pp. 1936-1942
Author(s):  
K S Kim ◽  
M S Rosenkrantz ◽  
L Guarente

The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
David M Garcia ◽  
David Dietrich ◽  
Jon Clardy ◽  
Daniel F Jarosz

Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


1986 ◽  
Vol 6 (6) ◽  
pp. 1936-1942 ◽  
Author(s):  
K S Kim ◽  
M S Rosenkrantz ◽  
L Guarente

The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed.


Sign in / Sign up

Export Citation Format

Share Document