regulatory complex
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 86)

H-INDEX

58
(FIVE YEARS 6)

Author(s):  
Jose L. Saenz-Garcia ◽  
Beatriz S. Borges ◽  
Normanda Souza-Melo ◽  
Luiz V. Machado ◽  
Juliana S. Miranda ◽  
...  

The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 45
Author(s):  
Ben Braiek ◽  
Carole Moreno-Romieux ◽  
Charlotte Allain ◽  
Philippe Bardou ◽  
Arnaud Bordes ◽  
...  

We recently demonstrated that the Lacaune deficient homozygous haplotype 6 (LDHH6) potentially hosts a recessive perinatal lethal mutation in Lacaune dairy sheep mapped on OAR3. In the present study, we have analyzed the whole-genome sequences of two Lacaune ram heterozygous carriers of LDHH6. After variant calling and filtering against the variants of 86 non-carrier rams, we have identified a single nucleotide variant (SNV) in the two LDHH6 carriers whose variant allele induced a premature stop codon (p.Glu111*) in the Coiled-Coil Domain Containing 65 (CCDC65) gene. CCDC65 is involved in the assembly of the nexin-dynein regulatory complex for the formation of microtubules in ciliated cells. In order to identify the phenotype in homozygous sheep, we generated at-risk matings (n = 17) between rams and ewes heterozygous for the candidate variant in CCDC65. A total of 16 lambs were born alive with five genotyped as homozygous carriers. The homozygous lambs suffered from respiratory problems, and four of them died within the first month of life. At necropsy, we observed a broad hepatization of lung lobes possibly induced by infectious pneumonia. The management of this lethal recessive allele (frequency of 0.06) through reasoned mating in the Lacaune sheep selection schemes could reduce lamb mortality by 2%.


2021 ◽  
Author(s):  
Shimaa A. Abdellatef ◽  
Hisashi Tadakuma ◽  
Kangmin Yan ◽  
Takashi Fujiwara ◽  
Kodai Fukumoto ◽  
...  

AbstractDuring repetitive bending of cilia and flagella, axonemal dynein molecules move in an oscillatory manner along a microtubule (MT), but how the minus-end-directed motor dynein can oscillate back and forth is unknown. There are various factors that may regulate the dynein activities, e.g., the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of the oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and DNA origami that crosslinks the MTs. Electron microscopy (EM) showed patches of dynein molecules crossbridging two MTs in two opposite orientations; the oppositely oriented dyneins are expected to produce opposing forces. The optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillate back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without the additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.


2021 ◽  
Author(s):  
Erica D'Incà ◽  
Chiara Foresti ◽  
Luis Orduña ◽  
Alessandra Amato ◽  
Elodie Vandelle ◽  
...  

Grapevine is a woody temperate perennial plant and one of the most important fruit crops with global relevance in both the fresh fruit and winemaking industries. Unfortunately, global warming is affecting viticulture by altering developmental transitions and fruit maturation processes. In this context, uncovering the molecular mechanisms controlling the onset and progression of ripening could prove essential to maintain high-quality grapes and wines. Through a deep inspection of previously published transcriptomic data we identified the NAC family member VviCARPO (Controlled Adjustment of Ripening and maturation of Plant Organs) as a key regulator of grapevine maturation whose induction precedes the expression of well-known ripening associated genes. We explored VviCARPO binding landscapes through DAP-seq and overlapped its bound genes with transcriptomics datasets from stable and transient VviCARPO overexpressing grapevine plants to define a set of high-confidence targets. Among these, we identified key molecular ripening markers. Physiological, metabolic and promoter activation analyses showed that VviCARPO induces chlorophyll degradation and anthocyanin accumulation through the up-regulation of VviSGR1 and VviMYBA1, respectively, with the latter being up-regulated through a VviCARPO-VviNAC03 regulatory complex. Despite showing a closer phylogenetic relationship to senescent-related AtNAP homologues, VviCARPO complemented the nor mutant phenotype in tomato, suggesting it may have acquired a dual role as an orchestrator of both ripening- and senescence-related processes. Our data supports CARPO as a master regulator of the grapevine vegetative-to-mature phase organ transition and therefore an essential target for insuring fruit quality and environmental resilience.


Author(s):  
Oxana Schmidt ◽  
Nadja Nehls ◽  
Carolin Prexler ◽  
Kristina von Heyking ◽  
Tanja Groll ◽  
...  

Abstract Background Histone acetylation and deacetylation seem processes involved in the pathogenesis of Ewing sarcoma (EwS). Here histone deacetylases (HDAC) class I were investigated. Methods Their role was determined using different inhibitors including TSA, Romidepsin, Entinostat and PCI-34051 as well as CRISPR/Cas9 class I HDAC knockouts and HDAC RNAi. To analyze resulting changes microarray analysis, qRT-PCR, western blotting, Co-IP, proliferation, apoptosis, differentiation, invasion assays and xenograft-mouse models were used. Results Class I HDACs are constitutively expressed in EwS. Patients with high levels of individual class I HDAC expression show decreased overall survival. CRISPR/Cas9 class I HDAC knockout of individual HDACs such as HDAC1 and HDAC2 inhibited invasiveness, and blocked local tumor growth in xenograft mice. Microarray analysis demonstrated that treatment with individual HDAC inhibitors (HDACi) blocked an EWS-FLI1 specific expression profile, while Entinostat in addition suppressed metastasis relevant genes. EwS cells demonstrated increased susceptibility to treatment with chemotherapeutics including Doxorubicin in the presence of HDACi. Furthermore, HDACi treatment mimicked RNAi of EZH2 in EwS. Treated cells showed diminished growth capacity, but an increased endothelial as well as neuronal differentiation ability. HDACi synergizes with EED inhibitor (EEDi) in vitro and together inhibited tumor growth in xenograft mice. Co-IP experiments identified HDAC class I family members as part of a regulatory complex together with PRC2. Conclusions Class I HDAC proteins seem to be important mediators of the pathognomonic EWS-ETS-mediated transcription program in EwS and in combination therapy, co-treatment with HDACi is an interesting new treatment opportunity for this malignant disease.


2021 ◽  
Author(s):  
Jaroslava Seflova ◽  
Nima R. Habibi ◽  
John Q. Yap ◽  
Sean R. Cleary ◽  
Xuan Fang ◽  
...  

The sodium-potassium ATPase (NKA) establishes ion gradients that facilitate many physiological processes. In the heart, NKA activity is regulated by its interaction with phospholemman (PLM, FXYD1). Here we used a novel fluorescence lifetime-based assay to investigate the structure, stoichiometry, and affinity of the NKA-PLM regulatory complex. We observed concentration dependent association of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit followed by lower affinity alpha-alpha and alpha-PLM interactions. The data provide the first evidence that the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits in intact cells. Docking and molecular dynamics simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with stoichiometry (alpha-beta-PLM)2.


2021 ◽  
Vol 885 (1) ◽  
pp. 012014
Author(s):  
A Yu Loseva ◽  
E D Sanzheev

Abstract The article considers the development of urbanization in the regions of Russia through the formation of transport corridors. The authors analysed the urbanization processes and their features in three regions of Russia: Trans-Baikal Territory, the Republic of Buryatia, and the Irkutsk region. Transport corridors will continue to develop within the framework of the regional policy of Russia and China. The authors also evaluated the foreign economic activity with Mongolia and China. The study highlights the key role of regional centres in the development of foreign economic cooperation. The evolution of urbanization processes in these regions requires the creation of a regulatory complex, which will allow streamlining these processes. It is necessary to use the opportunities for further development of regional cities through the formation of international transport corridors.


2021 ◽  
Author(s):  
Yijie Geng ◽  
Tejia Zhang ◽  
Sean C. Godar ◽  
Brock R. Pluimer ◽  
Devin L. Harrison ◽  
...  

Human infants exhibit innate social behaviors at birth, yet little is understood about the embryonic development of sociality. We screened 1120 known drugs and found that embryonic inhibition of topoisomerase IIα (Top2a) resulted in lasting social deficits in zebrafish. In mice, prenatal Top2 inhibition caused behavioral defects related to core symptoms of autism, including impairments in social interaction and communication. Mutation of Top2a in zebrafish caused downregulation of a set of genes highly enriched for genes associated with autism in humans. Both the Top2a-regulated and autism-associated gene sets possess binding sites for polycomb repressive complex 2 (PRC2), a regulatory complex responsible for H3K27 trimethylation. Moreover, both gene sets are highly enriched for H3K27me3. Inhibition of PRC2 component Ezh2 rescued social deficits caused by Top2 inhibition. Therefore, Top2a is a key component of an evolutionarily conserved pathway that promotes the development of social behavior through PRC2 and H3K27me3.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Priyanka Shailendra Rana ◽  
Akram Alkrekshi ◽  
Wei Wang ◽  
Vesna Markovic ◽  
Khalid Sossey-Alaoui

The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Yan Liang ◽  
Robert Lyon ◽  
Jason Pellman ◽  
William Bradford ◽  
Stephan Lange ◽  
...  

Dysregulated protein degradative pathways are increasingly recognized as mediators of human cardiac disease. This pathway may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication. Genetic mutations in desmosomal genes resulting in the destabilization/breakdown of the desmosomal proteome are a central hallmark of all genetic-based desmosomal-targeted diseases, including the cardiac disease arrhythmogenic right ventricular (RV) dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here we identified a desmosomal resident regulatory complex, composed of subunit 6 of the COP9 signalosome (CSN6), enzymatically restricted neddylation and targets desmosomal proteome. Pharmacological restoration of CSN enzymatic function (via neddylation inhibitors) could rescue desmosomal protein loss in CSN6 deficient cardiomyocytes. Through the generation of two novel mouse models, we showed that cardiomyocyte-restricted CSN6 loss in mice selectively accelerated desmosomal destruction to trigger classic disease features associated with ARVD/C. We further showed that disruption of CSN6-mediated (neddylation) pathways underlined ARVD/C as CSN6 binding, localization, levels and function were impacted in hearts of classic ARVD/C mouse models and ARVD/C patients impacted by desmosomal loss and mutations, respectively. We anticipate our findings have broad implications towards understanding mechanisms driving desmosome degradation in other desmosomal-based diseases, such as cancers.


Sign in / Sign up

Export Citation Format

Share Document