scholarly journals The Flagellar Motility ofChlamydomonas pf25 Mutant Lacking an AKAP-binding Protein Is Overtly Sensitive to Medium Conditions

2006 ◽  
Vol 17 (1) ◽  
pp. 227-238 ◽  
Author(s):  
Chun Yang ◽  
Pinfen Yang

Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wild-typelike swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.

2012 ◽  
Vol 23 (16) ◽  
pp. 3143-3155 ◽  
Author(s):  
Thomas Heuser ◽  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Elizabeth F. Smith ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ­ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.


1985 ◽  
Vol 5 (7) ◽  
pp. 1772-1779
Author(s):  
M A Snyder ◽  
J M Bishop ◽  
J P McGrath ◽  
A D Levinson

We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.


2001 ◽  
Vol 153 (2) ◽  
pp. 443-448 ◽  
Author(s):  
Anne Roush Gaillard ◽  
Dennis R. Diener ◽  
Joel L. Rosenbaum ◽  
Winfield S. Sale

Previous physiological and pharmacological experiments have demonstrated that the Chlamydomonas flagellar axoneme contains a cAMP-dependent protein kinase (PKA) that regulates axonemal motility and dynein activity. However, the mechanism for anchoring PKA in the axoneme is unknown. Here we test the hypothesis that the axoneme contains an A-kinase anchoring protein (AKAP). By performing RII blot overlays on motility mutants defective for specific axonemal structures, two axonemal AKAPs have been identified: a 240-kD AKAP associated with the central pair apparatus, and a 97-kD AKAP located in the radial spoke stalk. Based on a detailed analysis, we have shown that AKAP97 is radial spoke protein 3 (RSP3). By expressing truncated forms of RSP3, we have localized the RII-binding domain to a region between amino acids 144–180. Amino acids 161–180 are homologous with the RII-binding domains of other AKAPs and are predicted to form an amphipathic helix. Amino acid substitution of the central residues of this region (L to P or VL to AA) results in the complete loss of RII binding. RSP3 is located near the inner arm dyneins, where an anchored PKA would be in direct position to modify dynein activity and regulate flagellar motility.


2012 ◽  
Vol 199 (4) ◽  
pp. 639-651 ◽  
Author(s):  
Priyanka Sivadas ◽  
Jennifer M. Dienes ◽  
Martin St. Maurice ◽  
William D. Meek ◽  
Pinfen Yang

A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.


2004 ◽  
Vol 381 (3) ◽  
pp. 587-592 ◽  
Author(s):  
Jennifer J. CARLISLE MICHEL ◽  
Kimberly L. DODGE ◽  
Wei WONG ◽  
Nicole C. MAYER ◽  
Lorene K. LANGEBERG ◽  
...  

mAKAP (muscle-selective A-kinase-anchoring protein) co-ordinates a cAMP-sensitive negative-feedback loop comprising PKA (cAMP-dependent protein kinase) and the cAMP-selective PDE4D3 (phosphodiesterase 4D3). In vitro and cellular experiments demonstrate that PKA-phosphorylation of PDE4D3 on Ser-13 increases the affinity of PDE4D3 for mAKAP. Our data suggest that activation of mAKAP-anchored PKA enhances the recruitment of PDE4D3, allowing for quicker signal termination.


2014 ◽  
Vol 306 (9) ◽  
pp. F996-F1007 ◽  
Author(s):  
Wenpeng Cui ◽  
Hasiyeti Maimaitiyiming ◽  
Xinyu Qi ◽  
Heather Norman ◽  
Qi Zhou ◽  
...  

Our previous studies support the protective effect of cGMP and cGMP-dependent protein kinase I (PKG-I) pathway on the development of renal fibrosis. Therefore, in the present studies, we determined whether pharmacologically or genetically increased PKG activity attenuates renal fibrosis in a unilateral ureteral obstruction (UUO) model and also examined the mechanisms involved. To increase PKG activity, we used the phosphodiesterase 5 inhibitor sildenafil and PKG transgenic mice. UUO model was induced in wild-type or PKG-I transgenic mice by ligating the left lateral ureteral and the renal fibrosis was observed after 14 days of ligation. Sildenafil was administered into wild-type UUO mice for 14 days. In vitro, macrophage and proximal tubular cell function was also analyzed. We found that sildenafil treatment or PKG transgenic mice had significantly reduced UUO-induced renal fibrosis, which was associated with reduced TGF-β signaling and reduced macrophage infiltration into kidney interstitial. In vitro data further demonstrated that both macrophages and proximal tubular cells were important sources of UUO-induced renal TGF-β levels. The interaction between macrophages and tubular cells contributes to TGF-β-induced renal fibrosis. Taken together, these data suggest that increasing PKG activity ameliorates renal fibrosis in part through regulation of macrophage and tubular cell function, leading to reduced TGF-β-induced fibrosis.


1997 ◽  
Vol 136 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Geoffrey Habermacher ◽  
Winfield S. Sale

One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Abhisheka Bansal ◽  
Kayode K. Ojo ◽  
Jianbing Mu ◽  
Dustin J. Maly ◽  
Wesley C. Van Voorhis ◽  
...  

ABSTRACT We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 ( Pf CDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2), a specific inhibitor of protein kinase G (PKG). These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes. IMPORTANCE Protein kinases of Plasmodium falciparum are being actively pursued as drug targets to treat malaria. However, compensatory mechanisms may reverse the drug activity against a kinase. In this study, we show that replacement of the wild-type threonine gatekeeper residue with methionine reduces the transphosphorylation activity of CDPK1. Mutant parasites with methionine gatekeeper residue compensate the reduced activity of CDPK1 through the action of PKG possibly by upregulation of CDPK6 or some other kinase. This study highlights that targeting one enzyme may lead to changes in transcript expression of other kinases that compensate for its function and may select for mutants that are less dependent on the target enzyme activity. Thus, inhibiting two kinases is a better strategy to protect the antimalarial activity of each, similar to artemisinin combination therapy or malarone (atovaquone and proguanil).


2011 ◽  
Vol 22 (14) ◽  
pp. 2520-2531 ◽  
Author(s):  
Erin E. Dymek ◽  
Thomas Heuser ◽  
Daniela Nicastro ◽  
Elizabeth F. Smith

The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.


1985 ◽  
Vol 5 (7) ◽  
pp. 1772-1779 ◽  
Author(s):  
M A Snyder ◽  
J M Bishop ◽  
J P McGrath ◽  
A D Levinson

We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.


Sign in / Sign up

Export Citation Format

Share Document