scholarly journals Sequential and Distinct Roles of the Cadherin Domain-containing Protein Axl2p in Cell Polarization in Yeast Cell Cycle

2007 ◽  
Vol 18 (7) ◽  
pp. 2542-2560 ◽  
Author(s):  
Xiang-Dong Gao ◽  
Lauren M. Sperber ◽  
Steven A. Kane ◽  
Zongtian Tong ◽  
Amy Hin Yan Tong ◽  
...  

Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or α cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it is not known when and how Axl2p functions together with other components of the axial landmark, such as Bud3p and Bud4p, to direct axial budding. Here, we show that the recruitment of Axl2p to the bud neck after S/G2 phase of the cell cycle depends on Bud3p and Bud4p. This recruitment is mediated via an interaction between Bud4p and the central region of the Axl2p cytoplasmic tail. This region of Axl2p, together with its N-terminal region and its transmembrane domain, is sufficient for axial budding. In addition, our work demonstrates a previously unappreciated role for Axl2p. Axl2p interacts with Cdc42p and other polarity-establishment proteins, and it regulates septin organization in late G1 independently of its role in polarity-axis determination. Together, these results suggest that Axl2p plays sequential and distinct roles in the regulation of cellular morphogenesis in yeast cell cycle.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Lawrence Sirovich

Abstract Many gene array studies of the yeast cell cycle have been performed (Cho RJ, Campbell MJ, Winzeler EA et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998;2:65–73; Orlando DA, Lin CY, Bernard A et al. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008;453:944–7; Pramila T, Wu W, Miles S et al. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 2006;20:2266–78; Spellman PT, Sherlock G, Zhang MQ et al. Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. MBoC 1998;9:3273–97). Largely, these studies contain elements drawn from laboratory experiments. The present investigation determines cell division cycle (CDC) genes solely from the data (Orlando DA, Lin CY, Bernard A et al. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008;453:944–7). It is shown by simple reasoning that the dynamics of the approximately 6000 yeast genes are described by an approximately six-dimensional space. This leads a precisely determined cell-cycle period, along with the quality and timing of the identified CDC genes. Convincing evidence for the role of the identified genes is obtained. While these show good agreement with standard CDC gene representatives (Orlando DA, Lin CY, Bernard A et al. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008;453:944–7; Spellman PT, Sherlock G, Zhang MQ et al. Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. MBoC 1998;9:3273–97; de Lichtenberg U, Jensen LJ, Fausbøll A et al. Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 2005;21:1164–71) several hundred newly revealed CDC genes appear, which merit attention. The present approach employs an adaptation of a method introduced to study turbulent flows (Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 2010;656:5–28), “dynamic mode decomposition” (DMD). From this, one can infer that singular value decomposition, analysis of the data entangles the underlying (gene) dynamics implicit in the data; and that DMD produces the disentangling transformation. It is the assertion of this study that a new tool now exists for the analysis of the gene array signals, and in particular for investigating the yeast cell cycle.


2006 ◽  
Vol 2 (11) ◽  
pp. e147 ◽  
Author(s):  
Jin Wang ◽  
Bo Huang ◽  
Xuefeng Xia ◽  
Zhirong Sun

1999 ◽  
Vol 146 (2) ◽  
pp. 373-387 ◽  
Author(s):  
Jana Drgonová ◽  
Tomás Drgon ◽  
Dong-Hyun Roh ◽  
Enrico Cabib

Previous work showed that the GTP-binding protein Rho1p is required in the yeast, Saccharomyces cerevisiae, for activation of protein kinase C (Pkc1p) and for activity and regulation of β(1→3)glucan synthase. Here we demonstrate a hitherto unknown function of Rho1p required for cell cycle progression and cell polarization. Cells of mutant rho1E45I in the G1 stage of the cell cycle did not bud at 37°C. In those cells actin reorganization and recruitment to the presumptive budding site did not take place at the nonpermissive temperature. Two mutants in adjacent amino acids, rho1V43T and rho1F44Y, showed a similar behavior, although some budding and actin polarization occurred at the nonpermissive temperature. This was also the case for rho1E45I when placed in a different genetic background. Cdc42p and Spa2p, two proteins that normally also move to the bud site in a process independent from actin organization, failed to localize properly in rho1E45I. Nuclear division did not occur in the mutant at 37°C, although replication of DNA proceeded slowly. The rho1 mutants were also defective in the formation of mating projections and in congregation of actin at the projections in the presence of mating pheromone. The in vitro activity of β(1→3)glucan synthase in rho1 E45I, although diminished at 37°C, appeared sufficient for normal in vivo function and the budding defect was not suppressed by expression of a constitutively active allele of PKC1. Reciprocally, when Pkc1p function was eliminated by the use of a temperature-sensitive mutation and β(1→3)glucan synthesis abolished by an echinocandin-like inhibitor, a strain carrying a wild-type RHO1 allele was able to produce incipient buds. Taken together, these results reveal a novel function of Rho1p that must be executed in order for the yeast cell to polarize.


Author(s):  
Martin Weinberger ◽  
Lisa Black ◽  
Terry A. Beerman ◽  
Joel A. Huberman ◽  
William C. Burhans

Sign in / Sign up

Export Citation Format

Share Document