scholarly journals Interdependence of the Peroxisome-targeting Receptors in Arabidopsis thaliana: PEX7 Facilitates PEX5 Accumulation and Import of PTS1 Cargo into Peroxisomes

2010 ◽  
Vol 21 (7) ◽  
pp. 1263-1271 ◽  
Author(s):  
Naxhiely Martínez Ramón ◽  
Bonnie Bartel

Peroxisomes compartmentalize certain metabolic reactions critical to plant and animal development. The import of proteins from the cytosol into the organelle matrix depends on more than a dozen peroxin (PEX) proteins, with PEX5 and PEX7 serving as receptors that shuttle proteins bearing one of two peroxisome-targeting signals (PTSs) into the organelle. PEX5 is the PTS1 receptor; PEX7 is the PTS2 receptor. In plants and mammals, PEX7 depends on PEX5 binding to deliver PTS2 cargo into the peroxisome. In this study, we characterized a pex7 missense mutation, pex7-2, that disrupts both PEX7 cargo binding and PEX7-PEX5 interactions in yeast, as well as PEX7 protein accumulation in plants. We examined localization of peroxisomally targeted green fluorescent protein derivatives in light-grown pex7 mutants and observed not only the expected defects in PTS2 protein import but also defects in PTS1 import. These PTS1 import defects were accompanied by reduced PEX5 accumulation in light-grown pex7 seedlings. Our data suggest that PEX5 and PTS1 import depend on the PTS2 receptor PEX7 in Arabidopsis and that the environment may influence this dependence. These data advance our understanding of the biogenesis of these essential organelles and provide a possible rationale for the retention of the PTS2 pathway in some organisms.

2019 ◽  
Vol 20 (22) ◽  
pp. 5637 ◽  
Author(s):  
Lifang Zou ◽  
Bingwei Yu ◽  
Xing-Liang Ma ◽  
Bihao Cao ◽  
Guoju Chen ◽  
...  

Chinese kale (Brassica oleracea var. chinensis Lei) is an important vegetable crop in South China, valued for its nutritional content and taste. Nonetheless, the thermal tolerance of Chinese kale still needs improvement. Molecular characterization of Chinese kale’s heat stress response could provide a timely solution for developing a thermally tolerant Chinese kale variety. Here, we report the cloning of multi-protein bridging factor (MBF) 1c from Chinese kale (BocMBF1c), an ortholog to the key heat stress responsive gene MBF1c. Phylogenetic analysis showed that BocMBF1c is highly similar to the stress-response transcriptional coactivator MBF1c from Arabidopsis thaliana (AtMBF1c), and the BocMBF1c coding region conserves MBF1 and helix-turn-helix (HTH) domains. Moreover, the promoter region of BocMBF1c contains three heat shock elements (HSEs) and, thus, is highly responsive to heat treatment. This was verified in Nicotiana benthamiana leaf tissue using a green fluorescent protein (GFP) reporter. In addition, the expression of BocMBF1c can be induced by various abiotic stresses in Chinese kale which indicates the involvement of stress responses. The BocMBF1c-eGFP (enhanced green fluorescent protein) chimeric protein quickly translocated into the nucleus under high temperature treatment in Nicotiana benthamiana leaf tissue. Overexpression of BocMBF1c in Arabidopsis thaliana results in a larger size and enhanced thermal tolerance compared with the wild type. Our results provide valuable insight for the role of BocMBF1c during heat stress in Chinese kale.


AoB Plants ◽  
2012 ◽  
Vol 2012 ◽  
Author(s):  
Stokes S. Baker ◽  
Cleo B. Vidican ◽  
David S. Cameron ◽  
Haittam G. Greib ◽  
Christine C. Jarocki ◽  
...  

2000 ◽  
Vol 113 (22) ◽  
pp. 3969-3977 ◽  
Author(s):  
A. DeRocher ◽  
C.B. Hagen ◽  
J.E. Froehlich ◽  
J.E. Feagin ◽  
M. Parsons

Apicomplexan parasites possess a plastid-like organelle called the apicoplast. Most proteins in the Toxoplasma gondii apicoplast are encoded in the nucleus and imported post-translationally. T. gondii apicoplast proteins often have a long N-terminal extension that directs the protein to the apicoplast. It can be modeled as a bipartite targeting sequence that contains a signal sequence and a plastid transit peptide. We identified two nuclearly encoded predicted plastid proteins and made fusions with green fluorescent protein to study protein domains required for apicoplast targeting. The N-terminal 42 amino acids of the apicoplast ribosomal protein S9 directs secretion of green fluorescent protein, indicating that targeting to the apicoplast proceeds through the secretory system. Large sections of the S9 predicted transit sequence can be deleted with no apparent impact on the ability to direct green fluorescent protein to the apicoplast. The predicted transit peptide domain of the S9 targeting sequence directs protein to the mitochondrion in vivo. The transit peptide can also direct import of green fluorescent protein into chloroplasts in vitro. These data substantiate the model that protein targeting to the apicoplast involves two distinct mechanisms: the first involving the secretory system and the second sharing features with typical chloroplast protein import.


2008 ◽  
Vol 20 (10) ◽  
pp. 2835-2847 ◽  
Author(s):  
In-Seob Han ◽  
Tong-Seung Tseng ◽  
William Eisinger ◽  
Winslow R. Briggs

Sign in / Sign up

Export Citation Format

Share Document