Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system

2000 ◽  
Vol 113 (22) ◽  
pp. 3969-3977 ◽  
Author(s):  
A. DeRocher ◽  
C.B. Hagen ◽  
J.E. Froehlich ◽  
J.E. Feagin ◽  
M. Parsons

Apicomplexan parasites possess a plastid-like organelle called the apicoplast. Most proteins in the Toxoplasma gondii apicoplast are encoded in the nucleus and imported post-translationally. T. gondii apicoplast proteins often have a long N-terminal extension that directs the protein to the apicoplast. It can be modeled as a bipartite targeting sequence that contains a signal sequence and a plastid transit peptide. We identified two nuclearly encoded predicted plastid proteins and made fusions with green fluorescent protein to study protein domains required for apicoplast targeting. The N-terminal 42 amino acids of the apicoplast ribosomal protein S9 directs secretion of green fluorescent protein, indicating that targeting to the apicoplast proceeds through the secretory system. Large sections of the S9 predicted transit sequence can be deleted with no apparent impact on the ability to direct green fluorescent protein to the apicoplast. The predicted transit peptide domain of the S9 targeting sequence directs protein to the mitochondrion in vivo. The transit peptide can also direct import of green fluorescent protein into chloroplasts in vitro. These data substantiate the model that protein targeting to the apicoplast involves two distinct mechanisms: the first involving the secretory system and the second sharing features with typical chloroplast protein import.

2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 434
Author(s):  
Alison Mbekeani ◽  
Will Stanley ◽  
Vishal Kalel ◽  
Noa Dahan ◽  
Einat Zalckvar ◽  
...  

Peroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids—which subsequently provide an important source of metabolic energy—and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia. The basic principle of peroxisomal protein import is evolutionarily conserved, proteins harbouring a peroxisomal-targeting signal 1 (PTS1) interact in the cytosol with the shuttling receptor Pex5 and are then imported into the peroxisome via the membrane-bound protein complex formed by Pex13 and Pex14. Surprisingly, whilst Pex5 is clearly identifiable, Pex13 and, perhaps, Pex14 are apparently absent from the coccidian genomes. To investigate the functionality of the PTS1 import mechanism in these parasites, expression of Pex5 from the model coccidian Toxoplasma gondii was shown to rescue the import defect of Pex5-deleted Saccharomyces cerevisiae. In support of these data, green fluorescent protein (GFP) bearing the enhanced (e)PTS1 known to efficiently localise to peroxisomes in yeast, localised to peroxisome-like bodies when expressed in Toxoplasma. Furthermore, the PTS1-binding domain of Pex5 and a PTS1 ligand from the putatively peroxisome-localised Toxoplasma sterol carrier protein (SCP2) were shown to interact in vitro. Taken together, these data demonstrate that the Pex5–PTS1 interaction is functional in the coccidia and indicate that a nonconventional peroxisomal import mechanism may operate in the absence of Pex13 and Pex14.


2010 ◽  
Vol 22 (1) ◽  
pp. 373
Author(s):  
M. Reichenbach ◽  
F. A. Habermann ◽  
H. D. Reichenbach ◽  
T. Guengoer ◽  
F. Weber ◽  
...  

An alternative approach to classic techniques for the generation of transgenic livestock is the use of viral vectors. Using lentiviral vectors (LV) we previously generated transgenic founder cattle with integrants carrying phosphoglycerate kinase (PGK) promoter-enhanced green fluorescent protein (eGFP) expression cassettes (Hofmann et al. 2004 Biol. Reprod. 71, 405-409). The aim of this work was to investigate the transmission of LV-PGK-eGFP integrants through the female and male germ line of transgenic founder cattle in resulting embryos, fetuses, and offspring. The female founder animal was superovulated and artificially inseminated with a nontransgenic bull. Six of the 16 embryos obtained were transferred to synchronized recipient heifers, resulting in 2 pregnancies and birth of 1 healthy male transgenic calf, expressing eGFP as detected by in vivo imaging and real-time PCR. Cryopreserved semen of the founder bull and matured COC of nontransgenic cows were used for in vitro embryo production as previously described by Hiendleder et al. (2004 Biol. Reprod. 71, 217-223). The rates of cleavage and development to blastocysts in vitro corresponded to 52.3 ± 3.8% and 23.5 ± 4.6%, respectively. In vivo expression of eGFP was observed at blastocyst stage (Day 7 after IVF) and was seen in 93.8% (198/211) of all blastocysts. Twenty-four eGFP-positive embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos flushed on Day 15, 2 fetuses recovered on Day 45, and a healthy male transgenic calf revealed consistent high-level expression of eGFP in all tissues investigated. These observations show for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. Although eGFP transgenic cattle have been produced before by nuclear transfer from transfected cells, lentiviral transgenesis has the advantage that only one copy of the provirus is integrated at a particular chromosomal integration site. High-fidelity expression of eGFP in embryos, fetuses, and offspring of founders provides an interesting tool for developmental studies in cattle, including interactions of gametes, embryos, and fetuses with their maternal environment.


1999 ◽  
Vol 67 (4) ◽  
pp. 1812-1820
Author(s):  
Maurizio del Poeta ◽  
Dena L. Toffaletti ◽  
Thomas H. Rude ◽  
Sara D. Sparks ◽  
Joseph Heitman ◽  
...  

2018 ◽  
Vol 194 ◽  
pp. 29-39 ◽  
Author(s):  
Fatemeh Motevalli ◽  
Azam Bolhassani ◽  
Shilan Hesami ◽  
Sepideh Shahbazi

2007 ◽  
Vol 196 (s2) ◽  
pp. S313-S322 ◽  
Author(s):  
Hideki Ebihara ◽  
Steven Theriault ◽  
Gabriele Neumann ◽  
Judie B. Alimonti ◽  
Joan B. Geisbert ◽  
...  

2007 ◽  
Vol 15 (3) ◽  
pp. 3-5
Author(s):  
Stephen W. Carmichael

How do lumens form? Two mechanisms that come readily to mind are a wrapping model, similar to the wrapping of the myelin sheath around a neuronal process, and a solid core of cells followed by apoptosis of the central cells. Another obvious mechanism that was suggested over 100 years ago is the fusion of intracellular vacuoles. Whereas several recent studies have supported this latter mechanism, it has not yet been proven. Now, the appropriate animal model (zebrafish), the modern techniques (transgenic chimeras), dyes (green fluorescent protein and monomeric red fluorescent protein) that can be linked to proteins to label vacuoles, and two-photon imaging in real time finally have provided the strongest support yet. In an article by Makoto Kamei, Brian Saunders, Kayla Bayless, Louis Dye, George Davis, and Brant Weinstein the assembly of endothelial tubes from intracellular vacuoles was observed in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document