scholarly journals Induction of a Massive Endoplasmic Reticulum and Perinuclear Space Expansion by Expression of Lamin B Receptor Mutants and the Related Sterol Reductases TM7SF2 and DHCR7

2010 ◽  
Vol 21 (2) ◽  
pp. 354-368 ◽  
Author(s):  
Monika Zwerger ◽  
Thorsten Kolb ◽  
Karsten Richter ◽  
Iakowos Karakesisoglou ◽  
Harald Herrmann

Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.

1993 ◽  
Vol 122 (2) ◽  
pp. 295-306 ◽  
Author(s):  
N Chaudhary ◽  
JC Courvalin

The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane-derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.


1999 ◽  
Vol 144 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Sheona Drummond ◽  
Paul Ferrigno ◽  
Carol Lyon ◽  
Jackie Murphy ◽  
Martin Goldberg ◽  
...  

In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.


2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


1970 ◽  
Vol 46 (2) ◽  
pp. 379-395 ◽  
Author(s):  
Werner W. Franke ◽  
Barbara Deumling ◽  
Baerbel Ermen ◽  
Ernst-Dieter Jarasch ◽  
Hans Kleinig

Nuclear membranes were isolated from rat and pig liver by sonication of highly purified nuclear fractions and subsequent removal of adhering nucleoproteins in a high salt medium. The fractions were examined in the electron microscope by both negative staining and thin sectioning techniques and were found to consist of nuclear envelope fragments of widely varying sizes. Nuclear pore complex constituents still could frequently be recognized. The chemical composition of the nuclear membrane fractions was determined and compared with those of microsomal fractions prepared in parallel. For total nuclei as well as for nuclear membranes and microsomes, various enzyme activities were studied. The results indicate that a similarity exists between both fractions of cytomembranes, nuclear envelope, and endoplasmic reticulum, with respect to their RNA:protein ratio and their content of polar and nonpolar lipids. Both membranous fractions had many proteins in common including some membrane-bound enzymes. Activities in Mg-ATPase and the two examined cytochrome reductases were of the same order of magnitude. The content of cytochrome b5 as well as of P-450 was markedly lower in the nuclear membranes. The nuclear membranes were found to have a higher buoyant density and to be richer in protein. The glucose-6-phosphatase and Na-K-ATPase activities in the nuclear membrane fraction were very low. In the gel electrophoresis, in addition to many common protein bands, some characteristic ones for either microsomal or nuclear membranous material were detected. Significant small amounts of DNA and RNA were found to remain closely associated with the nuclear envelope fragments. Our findings indicate that nuclear and endoplasmic reticulum membranes which are known to be in morphological continuity have, besides a far-reaching similarity, some characteristic differences.


1990 ◽  
Vol 172 (3) ◽  
pp. 961-967 ◽  
Author(s):  
J C Courvalin ◽  
K Lassoued ◽  
H J Worman ◽  
G Blobel

We have identified autoantibodies from two patients with primary biliary cirrhosis (PBC) that recognize the nuclear envelope of mammalian cells on indirect immunofluorescence microscopy. These antibodies bind to a 58-kD integral membrane protein (p58) of the turkey erythrocyte nuclear envelope, which has been previously identified as a membrane receptor for lamin B (Worman, H. J., J. Yuan, G. Blobel, and S. D. Georgatos. 1988. Proc. Natl. Acad. Sci. USA. 85:8531). The antibodies also bind to a 61-kD integral membrane protein (p61) of the rat liver nuclear envelope. Affinity-purified antibodies eluted from turkey p58 bind to rat p61, showing that the two proteins share an epitope(s) and that p61 is likely the rat liver lamin B receptor. In human nuclear envelopes, the antigen recognized has an apparent molecular mass close to that of avian protein. These findings, along with the previous discovery of autoantibodies against an integral membrane glycoprotein (gp210) of the nuclear pore membrane in patients with PBC, suggest that antibodies against integral membrane proteins of the nuclear envelope are characteristic of a subset of patients with PBC.


2011 ◽  
Vol 22 (18) ◽  
pp. 3306-3317 ◽  
Author(s):  
Li-Chuan Tseng ◽  
Rey-Huei Chen

The nuclear envelope of metazoans disassembles during mitosis and reforms in late anaphase after sister chromatids have well separated. The coordination of these mitotic events is important for genome stability, yet the temporal control of nuclear envelope reassembly is unknown. Although the steps of nuclear formation have been extensively studied in vitro using the reconstitution system from egg extracts, the temporal control can only be studied in vivo. Here, we use time-lapse microscopy to investigate this process in living HeLa cells. We demonstrate that Cdk1 activity prevents premature nuclear envelope assembly and that phosphorylation of the inner nuclear membrane protein lamin B receptor (LBR) by Cdk1 contributes to the temporal control. We further identify a region in the nucleoplasmic domain of LBR that inhibits premature chromatin binding of the protein. We propose that this inhibitory effect is partly mediated by Cdk1 phosphorylation. Furthermore, we show that the reduced chromatin-binding ability of LBR together with Aurora B activity contributes to nuclear envelope breakdown. Our studies reveal for the first time a mechanism that controls the timing of nuclear envelope reassembly through modification of an integral nuclear membrane protein.


2003 ◽  
Vol 3 ◽  
pp. 1-20 ◽  
Author(s):  
Roland Foisner

The nuclear envelope (NE) consists of an inner and an outer membrane, nuclear pore complexes, and the underlying nuclear lamina, a filamentous scaffold structure formed by lamins. The inner membrane is linked to the lamina and chromatin by its integral membrane proteins, such as lamin B receptor (LBR), emerin, and various isoforms of lamina-associated polypeptides (LAP) 1 and 2, which bind lamins and/or chromatin. During mitosis, the NE is disassembled upon phosphorylation of its core components, and the NE is torn apart by a dynein-driven microtubule-dependent mechanism. Nuclear reassembly after sister chromatid separation requires a timely coordinated and dephosphorylation-dependent association of lamin-binding proteins and lamins with chromosomal proteins and targeting of membranes to specific sites on chromosomes. Various chromatin-binding domains in lamina proteins, such as the LEM domain, present in all LAP2 isoforms and in emerin, as well as unique regions in lamina proteins and in specific LAP2 isoforms have been implicated in defined steps of NE reformation. Furthermore, novel mechanisms of membrane fusion involving Ran GTPase are just beginning to emerge.


2000 ◽  
Vol 113 (5) ◽  
pp. 779-794 ◽  
Author(s):  
T. Haraguchi ◽  
T. Koujin ◽  
T. Hayakawa ◽  
T. Kaneda ◽  
C. Tsutsumi ◽  
...  

We determined the times when the nuclear membrane, nuclear pore complex (NPC) components, and nuclear import function were recovered during telophase in living HeLa cells. Simultaneous observation of fluorescently-labeled NLS-bearing proteins, lamin B receptor (LBR)-GFP, and Hoechst33342-stained chromosomes revealed that nuclear membranes reassembled around chromosomes by 5 minutes after the onset of anaphase (early telophase) whereas nuclear import function was recovered later, at 8 minutes. GFP-tagged emerin also accumulated on chromosomes 5 minutes after the onset of anaphase. Interestingly, emerin and LBR initially accumulated at distinct, separate locations, but then became uniform 8 minutes after the onset of anaphase, concurrent with the recovery of nuclear import function. We further determined the timing of NPC assembly by immunofluorescence staining of cells fixed at precise times after the onset of anaphase. Taken together, these results showed that emerin, LBR, and several NPC components (RanBP2, Nup153, p62), but not Tpr, reconstitute around chromosomes very early in telophase prior to the recovery of nuclear import activity.


1998 ◽  
Vol 111 (9) ◽  
pp. 1293-1303 ◽  
Author(s):  
P. Collas

Using sea urchin embryonic and in-vitro-assembled nuclei incubated in sea urchin mitotic extract, I provide evidence for a requirement for functional nuclear pores and a nuclear lamina for nuclear envelope disassembly in vitro. In interphase gastrula nuclei, lamin B interacts with p56, an integral protein of inner nuclear membrane cross-reacting with antibodies to human lamin B receptor. Incubation of gastrula nuclei in mitotic cytosol containing an ATP-generating system rapidly induces hyperphosphorylation of p56 and lamin B. Subsequently, p56-lamin B interactions are weakened and the two proteins segregate into distinct nuclear envelope-derived vesicles upon disassembly of nuclear membranes and of the lamina. Nuclear disassembly is accompanied by chromatin condensation. Blocking nuclear pore function with wheat germ agglutinin or antibodies to nucleoporins prevents p56 and lamin B hyperphosphorylation, nuclear membrane breakdown and lamina solubilization. These events are not rescued by permeabilization of nuclear membranes to molecules of 150, 000 Mr with lysolecithin. In-vitro-assembled nuclei containing nuclear membranes with functional pores but no lamina do not disassemble in mitotic cytosol in spite of p56 hyperphosphorylation. Nuclear import of soluble lamin B and reformation of a lamina in interphase extract restores nuclear disassembly in mitotic cytosol. The data indicate a role for functional nuclear pores in nuclear disassembly in vitro. They show that p56 hyperphosphorylation is not sufficient for nuclear membrane disassembly in mitotic cytosol and argue that the nuclear lamina plays a critical role in nuclear disassembly at mitosis.


Sign in / Sign up

Export Citation Format

Share Document