scholarly journals β-Catenin–dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells

2013 ◽  
Vol 24 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Jinbo Han ◽  
Priya Sridevi ◽  
Michael Ramirez ◽  
Kirsten J. Ludwig ◽  
Jean Y. J. Wang

The Wnt/β-catenin pathway is constitutively activated in more than 90% of human colorectal cancer. Activated β-catenin stimulates cell proliferation and survival, however, its antiapoptotic mechanisms are not fully understood. We show here that activated β-catenin is required to suppress caspase-8 activation, but only in colon cancer cells that are resistant to tumor necrosis factor-α (TNF)-induced apoptosis. We found that lysosomal delivery of internalized TNF occurred at a faster pace in apoptosis-resistant than in apoptosis-sensitive colon cancer cells. Retardation of endosomal trafficking through vacuolar ATPase (V-ATPase) inhibition enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive cells. Interestingly, knockdown of β-catenin also prolonged TNF association with the early endosome and enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive colon cancer cells. In a mouse model of inflammation-associated colon tumors, we found nuclear expression of β-catenin, resistance to TNF-induced apoptosis, and reactivation of apoptosis in vivo after cotreatment of TNF with a V-ATPase inhibitor. Together these results suggest that activated β-catenin can facilitate endosomal trafficking of internalized TNF to suppress caspase-8 activation in colon cancer cells.

2004 ◽  
Vol 15 (7) ◽  
pp. 3266-3284 ◽  
Author(s):  
Romaine Ingrid Fernando ◽  
Jay Wimalasena

Estrogens such as 17-β estradiol (E2) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E2 abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-α, H2O2, and serum starvation in causing apoptosis. Furthermore, the ability of E2 to prevent tumor necrosis factor-α-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90RSK1 and Akt, was not phosphorylated in response to E2 in vitro. E2 treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90RSK1 to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90RSK1 activation, E2 also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E2. Dominant negative Ras blocked E2-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E2-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E2-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E2 prevents apoptosis.


2001 ◽  
Vol 276 (50) ◽  
pp. 47202-47211 ◽  
Author(s):  
Adeeb M. Al-Zoubi ◽  
Elena V. Efimova ◽  
Shashi Kaithamana ◽  
Osvaldo Martinez ◽  
Mohammed El-Azami El-Idrissi ◽  
...  

We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a proteindifferentiallyexpressed innormal andneoplastic cells (DENN-SV) and human MADD (MAPK-activatingdeathdomain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor α (TNF-α)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor κB. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-α-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-α-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-α through alternative splicing.


2010 ◽  
Vol 101 (11) ◽  
pp. 2425-2429 ◽  
Author(s):  
Seungseob Kim ◽  
Nobumichi Ohoka ◽  
Keiichiro Okuhira ◽  
Kimie Sai ◽  
Tomoko Nishimaki-Mogami ◽  
...  

2003 ◽  
Vol 278 (50) ◽  
pp. 50402-50411 ◽  
Author(s):  
Mara Fornaro ◽  
Janet Plescia ◽  
Sophie Chheang ◽  
Giovanni Tallini ◽  
Yong-M. Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document