scholarly journals Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes

2013 ◽  
Vol 24 (7) ◽  
pp. 923-932 ◽  
Author(s):  
Dani L. Bodor ◽  
Luis P. Valente ◽  
João F. Mata ◽  
Ben E. Black ◽  
Lars E. T. Jansen

Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.

2020 ◽  
Author(s):  
Robert Nißler ◽  
Larissa Kurth, ◽  
Han Li ◽  
Alexander Spreinat ◽  
Ilyas Kuhlemann ◽  
...  

Semiconducting single wall carbon nanotubes (SWCNTs) fluoresce in the near infrared (NIR) and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors were mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the impact of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality pure (6,5)-, (7,5)-, (9,4)- and (7,6)- SWCNTs (emission at ~ 990, 1040, 1115 and 1130 nm). Exchange of the surfactant sodium deoxycholate (DOC) to specific singlestranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC used in the separation process was completely removed because residues impaired sensing. The assembled monochiral sensors were up to 10 times brighter than their non-purified counterparts and the ssDNA sequence affected absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140 %, Kd = 1.9 x10-7 M) and a long-term stability > 14 days. Furthermore, the specific ssDNA sequences imparted selectivity to the analytes independent of SWCNT chirality and handedness of (+/-) (6,5)-SWCNTs. These monochiral/single-color SWCNTs enabled ratiometric/multiplexed sensing of dopamine, riboflavin, H2O2 and pH. In summary, we demonstrated the assembly, characteristics and potential of monochiral (single-color) SWCNTs for multiple NIR fluorescent sensing applications.


2020 ◽  
Author(s):  
Robert Nißler ◽  
Larissa Kurth, ◽  
Han Li ◽  
Alexander Spreinat ◽  
Ilyas Kuhlemann ◽  
...  

Semiconducting single wall carbon nanotubes (SWCNTs) fluoresce in the near infrared (NIR) and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors were mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the impact of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality pure (6,5)-, (7,5)-, (9,4)- and (7,6)- SWCNTs (emission at ~ 990, 1040, 1115 and 1130 nm). Exchange of the surfactant sodium deoxycholate (DOC) to specific singlestranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC used in the separation process was completely removed because residues impaired sensing. The assembled monochiral sensors were up to 10 times brighter than their non-purified counterparts and the ssDNA sequence affected absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140 %, Kd = 1.9 x10-7 M) and a long-term stability > 14 days. Furthermore, the specific ssDNA sequences imparted selectivity to the analytes independent of SWCNT chirality and handedness of (+/-) (6,5)-SWCNTs. These monochiral/single-color SWCNTs enabled ratiometric/multiplexed sensing of dopamine, riboflavin, H2O2 and pH. In summary, we demonstrated the assembly, characteristics and potential of monochiral (single-color) SWCNTs for multiple NIR fluorescent sensing applications.


Sign in / Sign up

Export Citation Format

Share Document