scholarly journals FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c

2015 ◽  
Vol 26 (4) ◽  
pp. 696-710 ◽  
Author(s):  
Krishna Kumar Vasudevan ◽  
Kangkang Song ◽  
Lea M. Alford ◽  
Winfield S. Sale ◽  
Erin E. Dymek ◽  
...  

Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.

2019 ◽  
Vol 30 (15) ◽  
pp. 1805-1816 ◽  
Author(s):  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Gang Fu ◽  
Mary E. Porter ◽  
Daniela Nicastro ◽  
...  

We previously demonstrated that PACRG plays a role in regulating dynein-driven microtubule sliding in motile cilia. To expand our understanding of the role of PACRG in ciliary assembly and motility, we used a combination of functional and structural studies, including newly identified Chlamydomonas pacrg mutants. Using cryo-electron tomography we show that PACRG and FAP20 form the inner junction between the A- and B-tubule along the length of all nine ciliary doublet microtubules. The lack of PACRG and FAP20 also results in reduced assembly of inner-arm dynein IDA b and the beak-MIP structures. In addition, our functional studies reveal that loss of PACRG and/or FAP20 causes severe cell motility defects and reduced in vitro microtubule sliding velocities. Interestingly, the addition of exogenous PACRG and/or FAP20 protein to isolated mutant axonemes restores microtubule sliding velocities, but not ciliary beating. Taken together, these studies show that PACRG and FAP20 comprise the inner junction bridge that serves as a hub for both directly modulating dynein-driven microtubule sliding, as well as for the assembly of additional ciliary components that play essential roles in generating coordinated ciliary beating.


2015 ◽  
Vol 26 (8) ◽  
pp. 1463-1475 ◽  
Author(s):  
Paulina Urbanska ◽  
Kangkang Song ◽  
Ewa Joachimiak ◽  
Lucja Krzemien-Ojak ◽  
Piotr Koprowski ◽  
...  

Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.


2012 ◽  
Vol 23 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Cynthia F. Barber ◽  
Thomas Heuser ◽  
Blanca I. Carbajal-González ◽  
Vladimir V. Botchkarev ◽  
Daniela Nicastro

Radial spokes (RSs) play an essential role in the regulation of axonemal dynein activity and thus of ciliary and flagellar motility. However, few details are known about the complexes involved. Using cryo–electron tomography and subtomogram averaging, we visualized the three-dimensional structure of the radial spokes in Chlamydomonas flagella in unprecedented detail. Unlike many other species, Chlamydomonas has only two spokes per axonemal repeat, RS1 and RS2. Our data revealed previously uncharacterized features, including two-pronged spoke bases that facilitate docking to the doublet microtubules, and that inner dyneins connect directly to the spokes. Structures of wild type and the headless spoke mutant pf17 were compared to define the morphology and boundaries of the head, including a direct RS1-to-RS2 interaction. Although the overall structures of the spokes are very similar, we also observed some differences, corroborating recent findings about heterogeneity in the docking of RS1 and RS2. In place of a third radial spoke we found an uncharacterized, shorter electron density named “radial spoke 3 stand-in,” which structurally bears no resemblance to RS1 and RS2 and is unaltered in the pf17 mutant. These findings demonstrate that radial spokes are heterogeneous in structure and may play functionally distinct roles in axoneme regulation.


2021 ◽  
Author(s):  
Kai Cai ◽  
Yanhe Zhao ◽  
Lei Zhao ◽  
Nhan Phan ◽  
George Witman ◽  
...  

'9+2' motile cilia contain 9 doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic approaches and quantitative proteomics with cryo-electron tomography and subtomogram averaging to compare the CA of wild-type Chlamydomonas with those of two CA mutants. Our results show that two conserved proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA. We also identified another novel CA candidate protein, FAP413, which interacts with both FAP42 and FAP246. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of both the C1b and C1f projections, and loss of any of these proteins leads to ciliary motility defects. Our results provide insight into the subunit organization and 3D structure of the C1b projection, suggesting that the FAP246-FAP413-FAP42 subcomplex is part of a large interconnected CA-network that provides mechanical support and may play a role in mechano-signaling between the CA and radial spokes to regulate dynein activity and ciliary beating.


2018 ◽  
Vol 115 (43) ◽  
pp. 10977-10982 ◽  
Author(s):  
Shujun Cai ◽  
Chen Chen ◽  
Zhi Yang Tan ◽  
Yinyi Huang ◽  
Jian Shi ◽  
...  

Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and “megacomplexes,” which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.


1981 ◽  
Vol 88 (1) ◽  
pp. 73-79 ◽  
Author(s):  
G Piperno ◽  
B Huang ◽  
Z Ramanis ◽  
D J Luck

Polypeptides from flagella or axonemes of Chlamydomonas reinhardtii were analyzed by labeling cellular proteins by prolonged growth on 35S-containing media and using one- and two-dimensional electrophoretic techniques which can resolve greater than 170 axonemal components. By this approach, a paralyzed mutant that lacks axonemal radial spokes, pf14, has been shown to lack 17 polypeptides in the molecular weight range of 20,000 to 124,000 and in the isoelectric point range of 4.8-7.1. Five of those polypeptides are also missing in the mutant pf-1 which lacks only radial spokeheads. The identification of the 17 polypeptides missing in pf-14 as components of radial spoke structures and the localization of the polypeptides lacking in pf-1 within the spokehead, are supported by experiments of chemical dissection of wild-type axonemes. Extraction procedures that solubilize outer and inner dynein arms preserve the structure of the radial spokes along with the 17 polypeptides in question. Six radial spoke polypeptides are solubilized in conditions that cause disassembly of radial spokeheads from the stalks and those components include the five polypeptides missing in pf-1. No Ca++- or Mg++-activated ATPase activities were found to be associated with solubilized preparations of wild-type radial spokeheads. In vivo pulse 32P incorporation experiments provide evidence that greater than 80 axonemal components are labeled by 32P and that five of the radial spoke stalk polypeptides are modified to different extents.


2019 ◽  
Author(s):  
Jianfeng Lin ◽  
Thuc Vy Le ◽  
Katherine Augspurger ◽  
Douglas Tritschler ◽  
Raqual Bower ◽  
...  

AbstractCiliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat, and highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for pre-assembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus,IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms to a specific location in the 96 nm repeat.IDA8encodes FAP57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple inner dynein arms and regulatory complexes.


Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. eabd4914
Author(s):  
Sudarshan Gadadhar ◽  
Gonzalo Alvarez Viar ◽  
Jan Niklas Hansen ◽  
An Gong ◽  
Aleksandr Kostarev ◽  
...  

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo–electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.


2012 ◽  
Vol 23 (16) ◽  
pp. 3143-3155 ◽  
Author(s):  
Thomas Heuser ◽  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Elizabeth F. Smith ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ­ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.


Sign in / Sign up

Export Citation Format

Share Document