scholarly journals Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility

Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. eabd4914
Author(s):  
Sudarshan Gadadhar ◽  
Gonzalo Alvarez Viar ◽  
Jan Niklas Hansen ◽  
An Gong ◽  
Aleksandr Kostarev ◽  
...  

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo–electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.

2013 ◽  
Vol 201 (2) ◽  
pp. 263-278 ◽  
Author(s):  
Ryosuke Yamamoto ◽  
Kangkang Song ◽  
Haru-aki Yanagisawa ◽  
Laura Fox ◽  
Toshiki Yagi ◽  
...  

Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo–electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin–dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility.


2012 ◽  
Vol 23 (16) ◽  
pp. 3143-3155 ◽  
Author(s):  
Thomas Heuser ◽  
Erin E. Dymek ◽  
Jianfeng Lin ◽  
Elizabeth F. Smith ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ­ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.


2008 ◽  
Vol 183 (5) ◽  
pp. 923-932 ◽  
Author(s):  
Khanh Huy Bui ◽  
Hitoshi Sakakibara ◽  
Tandis Movassagh ◽  
Kazuhiro Oiwa ◽  
Takashi Ishikawa

The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.


2017 ◽  
Author(s):  
Jianfeng Lin ◽  
Daniela Nicastro

Motile cilia and flagella are highly conserved organelles that are essential for the normal development and health of many eukaryotes including humans. To reveal the molecular mechanism of motility, we used cryo-electron tomography of active sea urchin sperm flagella to directly visualize the macromolecular complexes and their structural changes during flagellar beating. We resolved distinct conformations of dynein motors and regulators, and showed that many of them are distributed in bend-direction-dependent fashion in active flagella. Our results provide direct evidence for the conformational switching predicted by the ‘switch-point-hypothesis’. However, they also reveal a fundamentally different mechanism of generating motility by inhibiting dyneins, rather than activating them, causing an asymmetric distribution of force and thus bending. Our high-resolution structural and biochemical analyses provide a new understanding of the distinct roles played by various dyneins and regulators in ciliary motility and suggest a molecular mechanism for robust beating in an all-or-none manner.


2019 ◽  
Author(s):  
Long Gui ◽  
Kangkang Song ◽  
Douglas Tristchler ◽  
Raqual Bower ◽  
Yan Si ◽  
...  

ABSTRACTThe nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the eleven (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a sub-complex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N-terminus of DRC4 which is now shown to contribute to the core scaffold of the N-DRC and C-terminus of DRC5. Our results reveal the overall architecture of N-DRC, with the three subunits, DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the “functional subunits” associate, namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.Significance StatementCilia and flagella are small hair-like appendages in eukaryotic cells that play essential roles in cell sensing, signaling, and motility. The highly conserved nexin-dynein regulatory complex (N-DRC) is one of the key regulators for ciliary motility. At least 11 proteins (DRC1–11) have been assigned to the N-DRC, but their precise arrangement within the large N-DRC structure is not yet known. Here, using cryo-electron tomography combined with genetic approaches, we have localized DRC7, the sub-complex DRC8/DRC11, the N-terminus of DRC4, and the C-terminus of DRC5. Our results provide insights into the N-DRC structure, its function in the regulation of dynein activity, and the mechanism by which n-drc mutations can lead to defects in ciliary motility that cause disease.


2018 ◽  
Author(s):  
Hiroshi Yamaguchi ◽  
Toshiyuki Oda ◽  
Masahide Kikkawa ◽  
Hiroyuki Takeda

AbstractConstruction of motile cilia/flagella requires cytoplasmic preassembly of axonemal dyneins before transport into cilia. Axonemal dyneins have various subtypes, but the roles of each dynein subtype and their assembly processes remain elusive in vertebrates. The PIH protein family, consisting of four members, has been implicated in the assembly of different dynein subtypes, although evidence for this idea is sparse. Here, we established zebrafish mutants of all four PIH-protein genes: pih1d1, pih1d2, ktu, and twister, and analyzed the structures of axonemal dyneins in mutant spermatozoa by cryo-electron tomography. Mutations caused the loss of specific dynein subtypes, which was correlated with abnormal sperm motility. We also found organ-specific compositions of dynein subtypes, which could explain the severe motility defects of mutant Kupffer’s vesicle cilia. Our data demonstrate that all vertebrate PIH proteins are differently required for cilia/flagella motions and the assembly of axonemal dyneins, assigning specific dynein subtypes to each PIH protein.


2021 ◽  
pp. mbc.E20-12-0806
Author(s):  
Yanhe Zhao ◽  
Justine Pinskey ◽  
Jianfeng Lin ◽  
Weining Yin ◽  
Patrick R. Sears ◽  
...  

Cilia and flagella are evolutionarily conserved eukaryotic organelles involved in cell motility and signaling. In humans, mutations in Radial Spoke Head Protein 4 homolog A ( RSPH4A) can lead to primary ciliary dyskinesia (PCD), a life-shortening disease characterized by chronic respiratory tract infections, abnormal organ positioning, and infertility. Despite its importance for human health, the location of RSPH4A in human cilia has not been resolved, and the structural basis of RSPH4A-/- PCD remains elusive. Here, we present the native, three-dimensional structure of RSPH4A-/- human respiratory cilia using samples collected non-invasively from a PCD patient. Using cryo-electron tomography and subtomogram averaging, we compared the structures of control and RSPH4A-/- cilia, revealing primary defects in two of the three radial spokes (RSs) within the axonemal repeat and secondary (heterogeneous) defects in the central pair complex. Similar to RSPH1-/- cilia, the radial spoke heads of RS1 and RS2, but not RS3, were missing in RSPH4A-/- cilia. However, RSPH4A-/- cilia also exhibited defects within the arch domains adjacent to the RS1 and RS2 heads, which were not observed with RSPH1 loss. Our results provide insight into the underlying structural basis for RSPH4A-/- PCD and highlight the benefits of applying cryo-ET directly to patient samples for molecular structure determination. [Media: see text]


2020 ◽  
Author(s):  
Amy S. Fabritius ◽  
Brian A. Bayless ◽  
Sam Li ◽  
Daniel Stoddard ◽  
Westley Heydeck ◽  
...  

AbstractMotile cilia and flagella are built from stable populations of doublet microtubules that comprise their axonemes. Their unique stability is brought about, at least in part, by a network of Microtubule Inner Proteins (MIPs) found in the lumen of their doublet microtubules. Rib72A and Rib72B were identified as microtubule inner proteins (MIPs) in the motile cilia of Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of multiple MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout (KO) Tetrahymena cells. From this analysis we identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.


2012 ◽  
Vol 23 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Cynthia F. Barber ◽  
Thomas Heuser ◽  
Blanca I. Carbajal-González ◽  
Vladimir V. Botchkarev ◽  
Daniela Nicastro

Radial spokes (RSs) play an essential role in the regulation of axonemal dynein activity and thus of ciliary and flagellar motility. However, few details are known about the complexes involved. Using cryo–electron tomography and subtomogram averaging, we visualized the three-dimensional structure of the radial spokes in Chlamydomonas flagella in unprecedented detail. Unlike many other species, Chlamydomonas has only two spokes per axonemal repeat, RS1 and RS2. Our data revealed previously uncharacterized features, including two-pronged spoke bases that facilitate docking to the doublet microtubules, and that inner dyneins connect directly to the spokes. Structures of wild type and the headless spoke mutant pf17 were compared to define the morphology and boundaries of the head, including a direct RS1-to-RS2 interaction. Although the overall structures of the spokes are very similar, we also observed some differences, corroborating recent findings about heterogeneity in the docking of RS1 and RS2. In place of a third radial spoke we found an uncharacterized, shorter electron density named “radial spoke 3 stand-in,” which structurally bears no resemblance to RS1 and RS2 and is unaltered in the pf17 mutant. These findings demonstrate that radial spokes are heterogeneous in structure and may play functionally distinct roles in axoneme regulation.


Sign in / Sign up

Export Citation Format

Share Document