scholarly journals Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A

2016 ◽  
Vol 48 (6) ◽  
pp. 573-580 ◽  
Author(s):  
Xiaofeng Wan ◽  
Yanfei Ru ◽  
Chen Chu ◽  
Zimei Ni ◽  
Yuchuan Zhou ◽  
...  
1993 ◽  
Vol 295 (3) ◽  
pp. 879-888 ◽  
Author(s):  
U Zor ◽  
E Ferber ◽  
P Gergely ◽  
K Szücs ◽  
V Dombrádi ◽  
...  

We have previously shown that vanadate potentiates the activating effect of phorbol ester (TPA) on cellular phospholipase A2 (PLA2) in a pathway dependent on the formation of reactive oxygen species (ROS). Here we evaluate the chain of enzymes (protein kinases and phosphatases) that participate in this process. Treatment of macrophages with vanadate plus TPA led to activation of protein kinase C (PKC) and NADPH oxidase (O2- generation in intact cells), massive cellular protein tyrosine phosphorylation, suppression of protein tyrosine phosphatase (PTP) activity and a sustained activation of protein tyrosine kinase (PTK) and myelin basic protein kinase activity (the latter three enzyme activities were assessed in cell lysates). Inhibition of ROS formation by diphenyleneiodonium (DPI) prevented PTP inhibition, PTK activation and protein tyrosine phosphorylation by vanadate plus TPA. Vanadate plus H2O2 mimicked the effect of vanadate plus TPA on PKC activation, cellular protein tyrosine phosphorylation, PTP and PTK, but their effects were resistant to DPI. Suppression of PKC activity (down-regulation; selective inhibitors) prevented the above-mentioned effects of vanadate plus TPA, but not of vanadate plus H2O2. Collectively, the results show that ROS formation induced by TPA in association with vanadate is essential in the modulation of protein tyrosine phosphorylation and PLA2 activity.


2020 ◽  
Vol 26 (37) ◽  
pp. 4822-4828
Author(s):  
Yian Zhou ◽  
Wenqing Xu ◽  
Yuan Yuan ◽  
Tao Luo

Bisphenol A (BPA) is an organic synthetic compound that is ubiquitously present in daily life. It is a typical environmental endocrine disruptor that affects the functions of endogenous hormones. There is a significant negative correlation between BPA and male reproduction. This mini-review describes current research data on the negative effects of BPA on sperm functions in humans and animal models, as well as on its supposed mechanisms of action, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and epigenetic changes. The published evidence showed an adverse impact of BPA on sperm tail morphology, counts, motility, and acrosome reaction action. Sperm function related signaling pathways, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and phosphorylation signaling, as well as epigenetic changes and sperm aging, are associated with BPA exposure in human and animal models. The clear risks of BPA exposure can provide greater awareness of the potential threat of environmental contaminants on male fertility.


1997 ◽  
Vol 324 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Alan RICHARDSON ◽  
John D. SHANNON ◽  
Reid B. ADAMS ◽  
Michael D. SCHALLER ◽  
J. Thomas PARSONS

Focal adhesion kinase (pp125FAK) is a protein tyrosine kinase that is localized to focal adhesions in many cell types and which undergoes tyrosine phosphorylation after integrin binding to extracellular matrix. In some cells the C-terminal non-catalytic domain of pp125FAK is expressed as a separate protein referred to as FRNK (FAK-related, non-kinase). We have previously shown that overexpression of FRNK inhibits tyrosine phosphorylation of pp125FAK and its substrates as well as inhibiting cell spreading on fibronectin. In this report we identify Ser148 and Ser151 as residues in FRNK that are phosphorylated after tyrosine phosphorylation of pp125FAK and in response to integrin binding to fibronectin. Tyrosine phosphorylation of pp125FAK appears to be an early event after integrin occupancy, and serine phosphorylation of FRNK occurs significantly later. Treatment of fibroblasts with a series of protein kinase A inhibitors delayed serine phosphorylation of FRNK as well as cell spreading on fibronectin and tyrosine phosphorylation of pp125FAK. However, these PKA inhibitors are unlikely to delay cell spreading simply by preventing serine phosphorylation of FRNK, as overexpression of FRNK containing mutations of Ser148 and Ser151 either singly or jointly to either alanine or glutamate residues did not significantly alter the ability of FRNK to act as an inhibitor of pp125FAK.


Sign in / Sign up

Export Citation Format

Share Document