Anatomical substrates for movement performance: cerebral cortex and the corticospinal tract

Author(s):  
Robert Porter ◽  
Roger Lemon
1991 ◽  
Vol 13 (5) ◽  
pp. 348-351 ◽  
Author(s):  
Kyokazu Ono ◽  
Tsunekazu Yamano ◽  
Morimi Shimada

2003 ◽  
Vol 461 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Tatsuro Yamamoto ◽  
Shunsuke Sakakibara ◽  
Katsuhiko Mikoshiba ◽  
Toshio Terashima

2020 ◽  
Vol 1 (1) ◽  
pp. 47-63
Author(s):  
Aleksey L. Kurenkov ◽  
Ada R. Artemenko

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation used for research and diagnostic purposes, as well as for the treatment of a number of diseases as one of the methods of neuromodulation. In pediatrics, TMS is most often used to assess the normal maturation of the corticospinal tract when stimulating the motor areas of the cortex of healthy children with a short single pulse magnetic stimulus, and recording motor evoked potentials from different muscles of the upper and lower extremities, as well as calculating the central motor conduction time. This technique is also used in pediatric neurology to determine conduction disturbances of the pulse along the corticospinal tract and to test neuroplasticity in damage to motor areas of the cerebral cortex and descending motor pathways in such diseases as cerebral palsy, stroke, and multiple sclerosis. Another aspect of TMS application is the evaluation of cortical inhibitory mechanisms with an assessment of the indices of the cortical silent period and the ipsilateral silent period, which often change with central nervous system lesions. With TMS it is also possible to map the cortical representation of a particular muscle, which is used to evaluate functional changes of the cerebral cortex in various neurological diseases. For an accurate implementation of the TMS mapping technique, complex navigation equipment must be currently used with focal TMS. The article describes in detail these and other diagnostic methods of TMS used in child neurology. The possibilities of the therapeutic use of repetitive TMS in childrens neurological diseases are considered in separate sections.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tokiharu Sato ◽  
Yuka Nakamura ◽  
Akinori Takeda ◽  
Masaki Ueno

The corticospinal tract (CST) is an essential neural pathway for reorganization that recovers motor functions after brain injuries such as stroke. CST comprises multiple pathways derived from different sensorimotor areas of the cerebral cortex; however, the patterns of reorganization in such complex pathways postinjury are largely unknown. Here we comprehensively examined the rewiring patterns of the CST pathways of multiple cerebral origins in a mouse stroke model that varied in size and location in the sensorimotor cortex. We found that spared contralesional motor and sensory CST axons crossed the midline and sprouted into the denervated side of the cervical spinal cord after stroke in a large cortical area. In contrast, the contralesional CST fibers did not sprout in a small stroke, whereas the ipsilesional axons from the spared motor area grew on the denervated side. We further showed that motor and sensory CST axons did not innervate the projecting areas mutually when either one was injured. The present results reveal the basic principles that generate the patterns of CST rewiring, which depend on stroke location and CST subtype. Our data indicate the importance of targeting different neural substrates to restore function among the types of injury.


Diagnostics ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 156 ◽  
Author(s):  
Chan-Hyuk Park ◽  
Su-Hong Kim ◽  
Han-Young Jung

This paper reports a mechanism for corticospinal tract injury in a patient with hemiplegia following traumatic brain injury (TBI) based on diffusion tensor tractography (DTT) finding. A 73-year-old male with TBI resulting from a fall, without medical history, was diagnosed as having left convexity epidural hematoma (EDH). He underwent craniotomy and suffered motor weakness on the right side of the body. Two weeks after onset, he was transferred to a rehabilitation department with an alerted level of consciousness. Four weeks after onset, his motor functions were grade 1 by the Medical Research Council’s (MRC) standards in the right-side limbs and grade 4 in the left-side limbs. The result of DTT using the different regions of interest (ROIs) showed that most of the right corticospinal tract (CST) did not reach the cerebral cortex around where the EDH was located, and when the ROI was placed on upper pons, a disconnection of the CST was shown and a connection of the CST in ROI with the middle pons appeared. However, the right CST was connected to the cerebral cortex below the pons regardless of ROI. This study is the first report to use DTT to detect that the discontinuation of the left CST in the cerebral cortex and injury lesions below the lower pons and between the upper and lower pons are responsible for motor weakness in a patient.


2020 ◽  
Author(s):  
Suzana Herculano‐Houzel ◽  
Felipe Barros Cunha ◽  
Jamie L. Reed ◽  
Consolate Kaswera‐Kyamakya ◽  
Emmanuel Gillissen ◽  
...  

Author(s):  
MB. Tank Buschmann

Development of oligodendrocytes in rat corpus callosum was described as a sequential change in cytoplasmic density which progressed from light to medium to dark (1). In rat optic nerve, changes in cytoplasmic density were not observed, but significant changes in morphology occurred just prior to and during myelination (2). In our study, the ultrastructural development of oligodendrocytes was studied in newborn, 5-, 10-, 15-, 20-day and adult frontal cortex of the golden hamster (Mesocricetus auratus).Young and adult hamster brains were perfused with paraformaldehyde-glutaraldehyde in sodium cacodylate buffer at pH 7.3 according to the method of Peters (3). Tissue samples of layer V of the frontal cortex were post-fixed in 2% osmium tetroxide, dehydrated in acetone and embedded in Epon-Araldite resin.


Sign in / Sign up

Export Citation Format

Share Document