Biogeographic and Taxonomic Patterns of Introduced Ants

Ant Ecology ◽  
2009 ◽  
pp. 233-244 ◽  
Author(s):  
Andrew V. Suarez ◽  
Terrence P. McGlynn ◽  
Neil D. Tsutsui
Keyword(s):  
2017 ◽  
Author(s):  
Ashly Senske ◽  
◽  
Claire Marvet ◽  
Sultan Akbar ◽  
Silishia Wong ◽  
...  

2020 ◽  
Author(s):  
Zahida Sultanova ◽  
Philip A. Downing ◽  
Pau Carazo

ABSTRACTSex-specific lifespans are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing “unguarded-X” hypothesis (UXh) explains this by differential expression of recessive mutations in the X/Z chromosome of the heterogametic sex (e.g., females in birds and males in mammals), but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y/W chromosome might lower the survival of the heterogametic sex (“toxic Y” hypothesis). Here, we report lower survival of the heterogametic relative to the homogametic sex across 138 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans. We then analysed bird and mammal karyotypes and found that the relative sizes of the X and Z chromosomes are not associated with sex-specific lifespans, contrary to UXh predictions. In contrast, we found that Y size correlates negatively with male survival in mammals, where toxic Y effects are expected to be particularly strong. This suggests that small Y chromosomes benefit male lifespans. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan, but indicate that, at least in mammals, this is better explained by “toxic Y” rather than UXh effects.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5979 ◽  
Author(s):  
Alex D. Washburne ◽  
Daniel E. Crowley ◽  
Daniel J. Becker ◽  
Kevin J. Olival ◽  
Matthew Taylor ◽  
...  

Predicting and simplifying which pathogens may spill over from animals to humans is a major priority in infectious disease biology. Many efforts to determine which viruses are at risk of spillover use a subset of viral traits to find trait-based associations with spillover. We adapt a new method—phylofactorization—to identify not traits but lineages of viruses at risk of spilling over. Phylofactorization is used to partition the International Committee on Taxonomy of Viruses viral taxonomy based on non-human host range of viruses and whether there exists evidence the viruses have infected humans. We identify clades on a range of taxonomic levels with high or low propensities to spillover, thereby simplifying the classification of zoonotic potential of mammalian viruses. Phylofactorization by whether a virus is zoonotic yields many disjoint clades of viruses containing few to no representatives that have spilled over to humans. Phylofactorization by non-human host breadth yields several clades with significantly higher host breadth. We connect the phylogenetic factors above with life-histories of clades, revisit trait-based analyses, and illustrate how cladistic coarse-graining of zoonotic potential can refine trait-based analyses by illuminating clade-specific determinants of spillover risk.


2015 ◽  
Vol 282 (1808) ◽  
pp. 20150401 ◽  
Author(s):  
Alex R. Gunderson ◽  
Jonathon H. Stillman

Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.


Sign in / Sign up

Export Citation Format

Share Document