Adiabatic Quantum Computing and Quantum Annealing

Author(s):  
Erica K. Grant ◽  
Travis S. Humble

Adiabatic quantum computing (AQC) is a model of computation that uses quantum mechanical processes operating under adiabatic conditions. As a form of universal quantum computation, AQC employs the principles of superposition, tunneling, and entanglement that manifest in quantum physical systems. The AQC model of quantum computing is distinguished by the use of dynamical evolution that is slow with respect to the time and energy scales of the underlying physical systems. This adiabatic condition enforces the promise that the quantum computational state will remain well-defined and controllable thus enabling the development of new algorithmic approaches. Several notable algorithms developed within the AQC model include methods for solving unstructured search and combinatorial optimization problems. In an idealized setting, the asymptotic complexity analyses of these algorithms indicate computational speed-ups may be possible relative to state-of-the-art conventional methods. However, the presence of non-ideal conditions, including non-adiabatic dynamics, residual thermal excitations, and physical noise complicate the assessment of the potential computational performance. A relaxation of the adiabatic condition is captured in the complementary computational heuristic of quantum annealing, which accommodates physical systems operating at finite temperature and in open environments. While quantum annealing (QA) provides a more accurate model for the behavior of actual quantum physical systems, the possibility of non-adiabatic effects obscures a clear separation with conventional computing complexity. A series of technological advances in the control of quantum physical systems have enabled experimental AQC and QA. Prominent examples include demonstrations using superconducting electronics, which encode quantum information in the magnetic flux induced by a weak current operating at cryogenic temperatures. A family of devices developed specifically for unconstrained optimization problems has been applied to solve problems in specific domains including logistics, finance, material science, machine learning, and numerical analysis. An accompanying infrastructure has also developed to support these experimental demonstrations and to enable access of a broader community of users. Although AQC is most commonly applied in superconducting technologies, alternative approaches include optically trapped neutral atoms and ion-trap systems. The significant progress in the understanding of AQC has revealed several open topics that continue to motivate research into this model of quantum computation. Foremost is the development of methods for fault-tolerant operation that will ensure the scalability of AQC for solving large-scale problems. In addition, unequivocal experimental demonstrations that differentiate the computational power of AQC and its variants from conventional computing approaches are needed. This will also require advances in the fabrication and control of quantum physical systems under the adiabatic restrictions.

Author(s):  
Zuo Dai ◽  
Jianzhong Cha

Abstract Artificial Neural Networks, particularly the Hopfield-Tank network, have been effectively applied to the solution of a variety of tasks formulated as large scale combinatorial optimization problems, such as Travelling Salesman Problem and N Queens Problem [1]. The problem of optimally packing a set of geometries into a space with finite dimensions arises frequently in many applications and is far difficult than general NP-complete problems listed in [2]. Until now within accepted time limit, it can only be solved with heuristic methods for very simple cases (e.g. 2D layout). In this paper we propose a heuristic-based Hopfield neural network designed to solve the rectangular packing problems in two dimensions, which is still NP-complete [3]. By comparing the adequacy and efficiency of the results with that obtained by several other exact and heuristic approaches, it has been concluded that the proposed method has great potential in solving 2D packing problems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
William Cruz-Santos ◽  
Salvador E. Venegas-Andraca ◽  
Marco Lanzagorta

AbstractQuantum annealing algorithms were introduced to solve combinatorial optimization problems by taking advantage of quantum fluctuations to escape local minima in complex energy landscapes typical of NP − hard problems. In this work, we propose using quantum annealing for the theory of cuts, a field of paramount importance in theoretical computer science. We have proposed a method to formulate the Minimum Multicut Problem into the QUBO representation, and the technical difficulties faced when embedding and submitting a problem to the quantum annealer processor. We show two constructions of the quadratic unconstrained binary optimization functions for the Minimum Multicut Problem and we review several tradeoffs between the two mappings and provide numerical scaling analysis results from several classical approaches. Furthermore, we discuss some of the expected challenges and tradeoffs in the implementation of our mapping in the current generation of D-Wave machines.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav2372 ◽  
Author(s):  
Hayato Goto ◽  
Kosuke Tatsumura ◽  
Alexander R. Dixon

Combinatorial optimization problems are ubiquitous but difficult to solve. Hardware devices for these problems have recently been developed by various approaches, including quantum computers. Inspired by recently proposed quantum adiabatic optimization using a nonlinear oscillator network, we propose a new optimization algorithm simulating adiabatic evolutions of classical nonlinear Hamiltonian systems exhibiting bifurcation phenomena, which we call simulated bifurcation (SB). SB is based on adiabatic and chaotic (ergodic) evolutions of nonlinear Hamiltonian systems. SB is also suitable for parallel computing because of its simultaneous updating. Implementing SB with a field-programmable gate array, we demonstrate that the SB machine can obtain good approximate solutions of an all-to-all connected 2000-node MAX-CUT problem in 0.5 ms, which is about 10 times faster than a state-of-the-art laser-based machine called a coherent Ising machine. SB will accelerate large-scale combinatorial optimization harnessing digital computer technologies and also offer a new application of computational and mathematical physics.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Junyi Huang ◽  
Yisheng Fang ◽  
Zhichao Ruan

AbstractRecently, spatial photonic Ising machines (SPIM) have been demonstrated to compute the minima of Hamiltonians for large-scale spin systems. Here we propose to implement an antiferromagnetic model through optoelectronic correlation computing with SPIM. Also we exploit the gauge transformation which enables encoding the spins and the interaction strengths in a single phase-only spatial light modulator. With a simple setup, we experimentally show the ground-state-search acceleration of an antiferromagnetic model with 40000 spins in number-partitioning problem. Thus such an optoelectronic computing exhibits great programmability and scalability for the practical applications of studying statistical systems and combinatorial optimization problems.


2020 ◽  
Author(s):  
Qizhuang Cen ◽  
Tengfei Hao ◽  
Hao Ding ◽  
Shanhong Guan ◽  
Zhiqiang Qin ◽  
...  

Abstract Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.


Author(s):  
Josef Jablonský

Linear programming (LP) and mixed integer linear programming (MILP) problems belong among very important class of problems that find their applications in various managerial consequences. The aim of the paper is to discuss computational performance of current optimization packages for solving large scale LP and MILP optimization problems. Current market with LP and MILP solvers is quite extensive. Probably among the most powerful solvers GUROBI 6.0, IBM ILOG CPLEX 12.6.1, and XPRESS Optimizer 27.01 belong. Their attractiveness for academic research is given, except their computational performance, by their free availability for academic purposes. The solvers are tested on the set of selected problems from MIPLIB 2010 library that contains 361 test instances of different hardness (easy, hard, and not solved).


Sign in / Sign up

Export Citation Format

Share Document