scholarly journals Microbiota and Hypertension: Role of the Sympathetic Nervous System and the Immune System

Author(s):  
Iñaki Robles-Vera ◽  
Marta Toral ◽  
Juan Duarte

Abstract There are numerous studies indicating a direct association between hypertension and gut microbiota in both animal models and humans. In this review, we focused on the imbalance in the gut microbiota composition relative to healthy state or homeostasis, termed dysbiosis, associated with hypertension and discuss the current knowledge regarding how microbiota regulates blood pressure (BP), involving the sympathetic nervous system and the immune system. The profile of ecological parameters and bacterial genera composition of gut dysbiosis in hypertension varies according to the experimental model of hypertension. Recent evidence supports that gut microbiota can protect or promote the development of hypertension by interacting with gut secondary lymph organs and altering T helper 17/regulatory T cells polarization, with subsequent changes in T cells infiltration in vascular tissues. Here, we also describe the bidirectional communication between the microbiome and the host via the sympathetic nervous system and its role in BP regulation. Dysbiosis in hypertension is mainly associated with reduced proportions of short-chain fatty acid-producing bacteria, mainly acetate- and butyrate-producing bacteria, and an increased enrichment of the genes for lipopolysaccharide biosynthesis and export, lending to moderate endotoxemia. The role of these metabolic and structural products in both immune and sympathetic system regulation and vascular inflammation was also analyzed. Overall, gut microbiota is now recognized as a well-established target to dietary interventions with prebiotics or probiotics to reduce BP.

2019 ◽  
Vol 10 ◽  
Author(s):  
Marta Toral ◽  
Iñaki Robles-Vera ◽  
Néstor de la Visitación ◽  
Miguel Romero ◽  
Tao Yang ◽  
...  

1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


2008 ◽  
Vol 4 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Kazuko Masuo ◽  
Gavin Lambert ◽  
Hiromi Rakugi ◽  
Toshio Ogihara ◽  
Murray Esler

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Costas Tsioufis ◽  
Athanasios Kordalis ◽  
Dimitris Flessas ◽  
Ioannis Anastasopoulos ◽  
Dimitris Tsiachris ◽  
...  

Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.


Sign in / Sign up

Export Citation Format

Share Document