scholarly journals Molecular phylogeny, divergence time estimates and historical biogeography within one of the world's largest monocot genera

AoB Plants ◽  
2016 ◽  
Vol 8 ◽  
pp. plw041 ◽  
Author(s):  
Qin-Qin Li ◽  
Song-Dong Zhou ◽  
De-Qing Huang ◽  
Xing-Jin He ◽  
Xian-Qin Wei
2020 ◽  
Author(s):  
Sebastián Escobar ◽  
Andrew J. Helmstetter ◽  
Rommel Montúfar ◽  
Thomas L. P. Couvreur ◽  
Henrik Balslev

AbstractThe vegetable ivory palms (Phytelepheae) form a small group of Neotropical palms whose phylogenetic relationships are not fully understood. Three genera and eight species are currently recognized; however, it has been suggested that Phytelephas macrocarpa could include the species Phytelephas seemannii and Phytelephas schottii because of supposed phylogenetic relatedness and similar morphology. We inferred their phylogenetic relationships and divergence time estimates using the 32 most clock-like loci of a custom palm bait-kit formed by 176 genes and four fossils for time calibration. We additionally explored the historical biogeography of the tribe under the recovered phylogenetic relationships. Our fossil-dated tree showed the eight species previously recognized, and that P. macrocarpa is not closely related to P. seemanii and P. schottii, which, as a consequence, should not be included in P. macrocarpa. The ancestor of the vegetable ivory palms was widely-distributed in the Chocó, the inter-Andean valley of the Magdalena River, and the Amazonia during the Miocene at 19.25 Ma. Early diversification in Phytelephas at 5.27 Ma can be attributed to trans-Andean vicariance between the Chocó/Magdalena and the Amazonia. Our results support the role of Andean uplift in the early diversification of Phytelephas under new phylogenetic relationships inferred from genomic data.


2017 ◽  
Vol 62 (16) ◽  
pp. 1106-1108 ◽  
Author(s):  
Yanjun Shen ◽  
Wei Dai ◽  
Zhaoming Gao ◽  
Guoyong Yan ◽  
Xiaoni Gan ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 294 ◽  
Author(s):  
Yuanyuan Li ◽  
Jianqing Zhu ◽  
Chen Ge ◽  
Ying Wang ◽  
Zimiao Zhao ◽  
...  

: The butterfly tribe Aeromachini Tutt, 1906 is a large group of skippers. In this study, a total of 10 genera and 45 species of putative members of this tribe, which represent most of the generic diversity and nearly all the species diversity of the group in China, were sequenced for two mitochondrial genes and three nuclear genes (2093 bp). The combined dataset was analyzed with maximum likelihood inference using IQtree. We found strong support for monophyly of Aeromachini from China and support for the most recent accepted species in the tribe. Two paraphyletic genera within Aeromachini are presented and discussed. The divergence time estimates with BEAST and ancestral-area reconstructions with RASP provide a detailed description about the historical biogeography of the Aeromachini from China. The tribe very likely originated from the Hengduan Mountains in the late Ecocene and expanded to the Himalaya Mountains and Central China Regions. A dispersal-vicariance analysis suggests that dispersal events have played essential roles in the distribution of extant species, and geological and climatic changes have been important factors driving current distribution patterns.


Zootaxa ◽  
2009 ◽  
Vol 2107 (1) ◽  
pp. 41-52 ◽  
Author(s):  
CAROLINA M VOLOCH ◽  
PABLO R FREIRE ◽  
CLAUDIA A M RUSSO

Fossil record of penaeids indicates that the family exists since the Triassic period, but extant genera appeared only recently in Tertiary strata. Molecular based divergence time estimates on the matter of penaeid radiation were never properly addressed, due to shortcomings of the global molecular clock assumptions. Here, we studied the diversification patterns of the family, uncovering, more specifically, a correlation between fossil and extant Penaeid fauna. For this, we have used a Bayesian framework that does not assume a global clock. Our results suggest that Penaeid genera originated between 20 million years ago and 43 million years ago, much earlier than expected by previous molecular studies. Altogether, these results promptly discard late Tertiary or even Quaternary hypotheses that presumed a major glaciations influence on the diversification patterns of the family.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3501-3509 ◽  
Author(s):  
Prashant P. Sharma ◽  
Gonzalo Giribet

The origins of tropical southwest Pacific diversity are traditionally attributed to southeast Asia or Australia. Oceanic and fragment islands are typically colonized by lineages from adjacent continental margins, resulting in attrition of diversity with distance from the mainland. Here, we show that an exceptional tropical family of harvestmen with a trans-Pacific disjunct distribution has its origin in the Neotropics. We found in a multi-locus phylogenetic analysis that the opilionid family Zalmoxidae, which is distributed in tropical forests on both sides of the Pacific, is a monophyletic entity with basal lineages endemic to Amazonia and Mesoamerica. Indo-Pacific Zalmoxidae constitute a nested clade, indicating a single colonization event. Lineages endemic to putative source regions, including Australia and New Guinea, constitute derived groups. Divergence time estimates and probabilistic ancestral area reconstructions support a Neotropical origin of the group, and a Late Cretaceous ( ca 82 Ma) colonization of Australasia out of the Fiji Islands and/or Borneo, which are consistent with a transoceanic dispersal event. Our results suggest that the endemic diversity within traditionally defined zoogeographic boundaries might have more complex evolutionary origins than previously envisioned.


Sign in / Sign up

Export Citation Format

Share Document