scholarly journals Consistent female preference for rare and unfamiliar male color patterns in wild guppy populations

2019 ◽  
Vol 30 (6) ◽  
pp. 1672-1681 ◽  
Author(s):  
Jennifer J Valvo ◽  
F Helen Rodd ◽  
Kimberly A Hughes

Abstract How genetic variation is maintained in ecologically important traits is a central question in evolutionary biology. Male Trinidadian guppies, Poecilia reticulata, exhibit high genetic diversity in color patterns within populations, and field and laboratory studies implicate negative frequency-dependent selection in maintaining this variation. However, behavioral and ecological processes that mediate this selection in natural populations are poorly understood. We evaluated female mate preference in 11 natural guppy populations, including paired populations from high- and low-predation habitats, to determine if this behavior is responsible for negative frequency-dependent selection and to evaluate its prevalence in nature. Females directed significantly more attention to males with rare and unfamiliar color patterns than to males with common patterns. Female attention also increased with the area of male orange coloration, but this preference was independent of the preference for rare and unfamiliar patterns. We also found an overall effect of predation regime; females from high-predation populations directed more attention toward males than those from low-predation populations. Again, however, the habitat-linked preference was statistically independent from the preference for rare and unfamiliar patterns. Because previous research indicates that female attention to males predicts male mating success, we conclude that the prevalence of female preference for males with rare and unfamiliar color patterns across many natural populations supports the hypothesis that female preference is an important process underlying the maintenance of high genetic variation in guppy color patterns.

1995 ◽  
Vol 65 (3) ◽  
pp. 175-191 ◽  
Author(s):  
Olivia P. Judson

SummaryUnderstanding how genetic variability is maintained in natural populations is of both theoretical and practical interest. In particular, the subdivision of populations into demes linked by low levels of migration has been suggested to play an important role. But the maintenance of genetic variation in populations is also often linked to the maintenance of sexual reproduction: any force that acts to maintain sex should also act to maintain variation. One theory for the maintenance of sex, the Red Queen, states that sex and variation are maintained by antagonistic coevolutionary interactions – especially those between hosts and their harmful parasites – that give rise to negative frequency-dependent selection. In this paper I present a model to examine the relationships between population subdivision, negative frequency-dependent selection due to parasites, the maintenance of sex, and the preservation of alleles from fixation. The results show strong interactions between migration rates, negative frequency-dependent selection, and the maintenance of variability for sexual and asexual populations.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zorana Kurbalija Novičić ◽  
Ahmed Sayadi ◽  
Mihailo Jelić ◽  
Göran Arnqvist

Abstract Background Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. Results We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. Conclusions Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.


The existence within natural populations of large amounts of genetic variation in molecules and morphology presents an evolutionary problem. The ‘neutralist’ solution to this problem, that the variation is usually unimportant to the organisms displaying it, has now lost much of its strength. Interpretations that assume widespread heterozygous advantage also face serious difficulties. A resolution is possible in terms of frequency-dependent selection by predators, parasites and competitors. The evidence for pervasive frequency-dependent selection is now very strong. It appears to follow naturally from the behaviour of predators, from the evolutionary lability of parasites, from the ecology of competition and, at the molecular level, from the phenomena of enzyme kinetics. Such selection can explain the maintenance not only of conventional polymorphism but also of continuous variation in both molecular and morphological characters. It can account for the occurrence of diversity within groups of haploid and self-fertilizing organisms, and for the evolution of differences between individuals in their systems of genetic control.


2017 ◽  
Author(s):  
Dustin Brisson

AbstractThis preprint has been reviewed and recommended by Peer Community in Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100024).The existence of persistent genetic variation within natural populations presents an evolutionary problem as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the high and sometimes extreme levels of polymorphism found in many natural populations. Negative frequency-dependent selection may be the most powerful selective force maintaining balanced natural polymorphisms but it is also commonly misinterpreted. The aim of this review is to clarify the processes underlying negative frequency-dependent selection, describe classes of natural polymorphisms that can and cannot result from these processes, and discuss observational and experimental data that can aid in accurately identifying the processes that generated or are maintain diversity in nature. Finally, I consider the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress.


2015 ◽  
Vol 11 (6) ◽  
pp. 20150192 ◽  
Author(s):  
Ewan J. A. Minter ◽  
Phillip C. Watts ◽  
Chris D. Lowe ◽  
Michael A. Brockhurst

Natural populations of free-living protists often exhibit high-levels of intraspecific diversity, yet this is puzzling as classic evolutionary theory predicts dominance by genotypes with high fitness, particularly in large populations where selection is efficient. Here, we test whether negative frequency-dependent selection (NFDS) plays a role in the maintenance of diversity in the marine flagellate Oxyrrhis marina using competition experiments between multiple pairs of strains. We observed strain-specific responses to frequency and density, but an overall signature of NFDS that was intensified at higher population densities. Because our strains were not selected a priori on the basis of particular traits expected to exhibit NFDS, these data represent a relatively unbiased estimate of the role for NFDS in maintaining diversity in protist populations. These findings could help to explain how bloom-forming plankton, which periodically achieve exceptionally high population densities, maintain substantial intraspecific diversity.


2020 ◽  
Vol 16 (7) ◽  
pp. 20200210
Author(s):  
Amanda K. Gibson ◽  
P. Signe White ◽  
McKenna J. Penley ◽  
Jacobus C. de Roode ◽  
Levi T. Morran

A core hypothesis in coevolutionary theory proposes that parasites adapt to specifically infect common host genotypes. Under this hypothesis, parasites function as agents of negative frequency-dependent selection, favouring rare host genotypes. This parasite-mediated advantage of rarity is key to the idea that parasites maintain genetic variation and select for outcrossing in host populations. Here, we report the results of an experimental test of parasite adaptation to common versus rare host genotypes. We selected the bacterial parasite Serratia marcescens to kill Caenorhabdiis elegans hosts in uneven mixtures of host genotypes. To examine the effect of commonness itself, independent of host identity, each of four host genotypes was represented as common or rare in experimental host mixtures. After experimental selection, we evaluated a parasite line's change in virulence—the selected fitness trait—on its rare and common host genotypes. Our results were consistent with a slight advantage for rare host genotypes: on average, parasites lost virulence against rare genotypes but not against common genotypes. The response varied substantially, however, with distinct patterns across host genotype mixtures. These findings support the potential for parasites to impose negative frequency-dependent selection, while emphasizing that the cost of being common may vary with host genotype.


2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuma Takahashi ◽  
Satoru Morita ◽  
Jin Yoshimura ◽  
Mamoru Watanabe

2016 ◽  
Vol 12 (8) ◽  
pp. 20160467 ◽  
Author(s):  
Daniel I. Bolnick ◽  
Kimberly Hendrix ◽  
Lyndon Alexander Jordan ◽  
Thor Veen ◽  
Chad D. Brock

Variation in male nuptial colour signals might be maintained by negative frequency-dependent selection. This can occur if males are more aggressive towards rivals with locally common colour phenotypes. To test this hypothesis, we introduced red or melanic three-dimensional printed-model males into the territories of nesting male stickleback from two optically distinct lakes with different coloured residents. Red-throated models were attacked more in the population with red males, while melanic models were attacked more in the melanic male lake. Aggression against red versus melanic models also varied across a depth gradient within each lake, implying that the local light environment also modulated the strength of negative frequency dependence acting on male nuptial colour.


Sign in / Sign up

Export Citation Format

Share Document