scholarly journals Succinct Dynamic de Bruijn Graphs

Author(s):  
Bahar Alipanahi ◽  
Alan Kuhnle ◽  
Simon J Puglisi ◽  
Leena Salmela ◽  
Christina Boucher

Abstract Motivation The de Bruijn graph is one of the fundamental data structures for analysis of high throughput sequencing data. In order to be applicable to population-scale studies, it is essential to build and store the graph in a space- and time- efficient manner. In addition, due to the ever-changing nature of population studies, it has become essential to update the graph after construction e.g. add and remove nodes and edges. Although there has been substantial effort on making the construction and storage of the graph efficient, there is a limited amount of work in building the graph in an efficient and mutable manner. Hence, most space efficient data structures require complete reconstruction of the graph in order to add or remove edges or nodes. Results In this paper we present DynamicBOSS, a succinct representation of the de Bruijn graph that allows for an unlimited number of additions and deletions of nodes and edges. We compare our method with other competing methods and demonstrate that DynamicBOSS is the only method that supports both addition and deletion and is applicable to very large samples (e.g. greater than 15 billion k-mers). Competing dynamic methods e.g., FDBG (Crawford et al., 2018) cannot be constructed on large scale datasets, or cannot support both addition and deletion e.g., BiFrost (Holley and Melsted, 2019). Availability DynamicBOSS is publicly available at https://github.com/baharpan/dynboss. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Bahar Alipanahi ◽  
Alan Kuhnle ◽  
Simon J. Puglisi ◽  
Leena Salmela ◽  
Christina Boucher

AbstractMotivationThe de Bruijn graph is one of the fundamental data structures for analysis of high throughput sequencing data. In order to be applicable to population-scale studies, it is essential to build and store the graph in a space- and time-efficient manner. In addition, due to the ever-changing nature of population studies, it has become essential to update the graph after construction e.g. add and remove nodes and edges. Although there has been substantial effort on making the construction and storage of the graph efficient, there is a limited amount of work in building the graph in an efficient and mutable manner. Hence, most space efficient data structures require complete reconstruction of the graph in order to add or remove edges or nodes.ResultsIn this paper we present DynamicBOSS, a succinct representation of the de Bruijn graph that allows for an unlimited number of additions and deletions of nodes and edges. We compare our method with other competing methods and demonstrate that DynamicBOSS is the only method that supports both addition and deletion and is applicable to very large samples (e.g. greater than 15 billion k-mers). Competing dynamic methods e.g., FDBG (Crawford et al., 2018) cannot be constructed on large scale datasets, or cannot support both addition and deletion e.g., BiFrost (Holley and Melsted, 2019).AvailabilityDynamicBOSS is publicly available at https://github.com/baharpan/[email protected]


Author(s):  
Borja Freire ◽  
Susana Ladra ◽  
Jose R Paramá ◽  
Leena Salmela

Abstract Motivation RNA viruses exhibit a high mutation rate and thus they exist in infected cells as a population of closely related strains called viral quasispecies. The viral quasispecies assembly problem asks to characterize the quasispecies present in a sample from high-throughput sequencing data. We study the de novo version of the problem, where reference sequences of the quasispecies are not available. Current methods for assembling viral quasispecies are either based on overlap graphs or on de Bruijn graphs. Overlap graph-based methods tend to be accurate but slow, whereas de Bruijn graph-based methods are fast but less accurate. Results We present viaDBG, which is a fast and accurate de Bruijn graph-based tool for de novo assembly of viral quasispecies. We first iteratively correct sequencing errors in the reads, which allows us to use large k-mers in the de Bruijn graph. To incorporate the paired-end information in the graph, we also adapt the paired de Bruijn graph for viral quasispecies assembly. These features enable the use of long-range information in contig construction without compromising the speed of de Bruijn graph-based approaches. Our experimental results show that viaDBG is both accurate and fast, whereas previous methods are either fast or accurate but not both. In particular, viaDBG has comparable or better accuracy than SAVAGE, while being at least nine times faster. Furthermore, the speed of viaDBG is comparable to PEHaplo but viaDBG is able to retrieve also low abundance quasispecies, which are often missed by PEHaplo. Availability and implementation viaDBG is implemented in C++ and it is publicly available at https://bitbucket.org/bfreirec1/viadbg. All datasets used in this article are publicly available at https://bitbucket.org/bfreirec1/data-viadbg/. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3632-3636 ◽  
Author(s):  
Weibo Zheng ◽  
Jing Chen ◽  
Thomas G Doak ◽  
Weibo Song ◽  
Ying Yan

Abstract Motivation Programmed DNA elimination (PDE) plays a crucial role in the transitions between germline and somatic genomes in diverse organisms ranging from unicellular ciliates to multicellular nematodes. However, software specific for the detection of DNA splicing events is scarce. In this paper, we describe Accurate Deletion Finder (ADFinder), an efficient detector of PDEs using high-throughput sequencing data. ADFinder can predict PDEs with relatively low sequencing coverage, detect multiple alternative splicing forms in the same genomic location and calculate the frequency for each splicing event. This software will facilitate research of PDEs and all down-stream analyses. Results By analyzing genome-wide DNA splicing events in two micronuclear genomes of Oxytricha trifallax and Tetrahymena thermophila, we prove that ADFinder is effective in predicting large scale PDEs. Availability and implementation The source codes and manual of ADFinder are available in our GitHub website: https://github.com/weibozheng/ADFinder. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Mikhail Karasikov ◽  
Harun Mustafa ◽  
Gunnar Rätsch ◽  
André Kahles

High-throughput sequencing data is rapidly accumulating in public repositories. Making this resource accessible for interactive analysis at scale requires efficient approaches for its storage and indexing. There have recently been remarkable advances in solving the experiment discovery problem and building compressed representations of annotated de Bruijn graphs where k-mer sets can be efficiently indexed and interactively queried. However, approaches for representing and retrieving other quantitative attributes such as gene expression or genome positions in a general manner have yet to be developed. In this work, we propose the concept of Counting de Bruijn graphs generalizing the notion of annotated (or colored) de Bruijn graphs. Counting de Bruijn graphs supplement each node-label relation with one or many attributes (e.g., a k-mer count or its positions in genome). To represent them, we first observe that many schemes for the representation of compressed binary matrices already support the rank operation on the columns or rows, which can be used to define an inherent indexing of any additional quantitative attributes. Based on this property, we generalize these schemes and introduce a new approach for representing non-binary sparse matrices in compressed data structures. Finally, we notice that relation attributes are often easily predictable from a node's local neighborhood in the graph. Notable examples are genome positions shifting by 1 for neighboring nodes in the graph, or expression levels that are often shared across neighbors. We exploit this regularity of graph annotations and apply an invertible delta-like coding to achieve better compression. We show that Counting de Bruijn graphs index k-mer counts from 2,652 human RNA-Seq read sets in representations over 8-fold smaller and yet faster to query compared to state-of-the-art bioinformatics tools. Furthermore, Counting de Bruijn graphs with positional annotations losslessly represent entire reads in indexes on average 27% smaller than the input compressed with gzip -9 for human Illumina RNA-Seq and 57% smaller for PacBio HiFi sequencing of viral samples. A complete joint searchable index of all viral PacBio SMRT reads from NCBI's SRA (152,884 read sets, 875 Gbp) comprises only 178 GB. Finally, on the full RefSeq collection, they generate a lossless and fully queryable index that is 4.4-fold smaller compared to the MegaBLAST index. The techniques proposed in this work naturally complement existing methods and tools employing de Bruijn graphs and significantly broaden their applicability: from indexing k-mer counts and genome positions to implementing novel sequence alignment algorithms on top of highly compressed and fully searchable graph-based sequence indexes.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Gaëtan Benoit ◽  
Claire Lemaitre ◽  
Dominique Lavenier ◽  
Erwan Drezen ◽  
Thibault Dayris ◽  
...  

2017 ◽  
Author(s):  
Anthony Bolger ◽  
Alisandra Denton ◽  
Marie Bolger ◽  
Björn Usadel

AbstractRecent massive growth in the production of sequencing data necessitates matching improve-ments in bioinformatics tools to effectively utilize it. Existing tools suffer from limitations in both scalability and applicability which are inherent to their underlying algorithms and data structures. We identify the key requirements for the ideal data structure for sequence analy-ses: it should be informationally lossless, locally updatable, and memory efficient; requirements which are not met by data structures underlying the major assembly strategies Overlap Layout Consensus and De Bruijn Graphs. We therefore propose a new data structure, the LOGAN graph, which is based on a memory efficient Sparse De Bruijn Graph with routing information. Innovations in storing routing information and careful implementation allow sequence datasets for Escherichia coli (4.6Mbp, 117x coverage), Arabidopsis thaliana (135Mbp, 17.5x coverage) and Solanum pennellii (1.2Gbp, 47x coverage) to be loaded into memory on a desktop computer in seconds, minutes, and hours respectively. Memory consumption is competitive with state of the art alternatives, while losslessly representing the reads in an indexed and updatable form. Both Second and Third Generation Sequencing reads are supported. Thus, the LOGAN graph is positioned to be the backbone for major breakthroughs in sequence analysis such as integrated hybrid assembly, assembly of exceptionally large and repetitive genomes, as well as assembly and representation of pan-genomes.


2016 ◽  
Author(s):  
Serghei Mangul ◽  
David Koslicki

ABSTRACTMicrobial communities inhabiting the human body exhibit significant variability across different individuals and tissues, and are suggested to play an important role in health and disease. High-throughput sequencing offers unprecedented possibilities to profile microbial community composition, but limitations of existing taxonomic classification methods (including incompleteness of existing microbial reference databases) limits the ability to accurately compare microbial communities across different samples. In this paper, we present a method able to overcome these limitations by circumventing the classification step and directly using the sequencing data to compare microbial communities. The proposed method provides a powerful reference-free way to assess differences in microbial abundances across samples. This method, called EMDeBruijn, condenses the sequencing data into a de Bruijn graph. The Earth Mover's Distance (EMD) is then used to measure similarities and differences of the microbial communities associated with the individual graphs. We apply this method to RNA-Seq data sets from a coronary artery calcification (CAC) study and shown that EMDeBruijn is able to differentiate between case and control CAC samples while utilizing all the candidate microbial reads. We compare these results to current reference-based methods, which are shown to have a limited capacity to discriminate between case and control samples. We conclude that this reference-free approach is a viable choice in comparative metatranscriptomic studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Blanco ◽  
Mar González-Ramírez ◽  
Luciano Di Croce

AbstractLarge-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu, and the source code is freely distributed at https://github.com/eblancoga/seqcode.


2018 ◽  
Author(s):  
Hongzhe Guo ◽  
Yilei Fu ◽  
Yan Gao ◽  
Junyi Li ◽  
Yadong Wang ◽  
...  

AbstractMotivationDe Bruijn graph, a fundamental data structure to represent and organize genome sequence, plays important roles in various kinds of sequence analysis tasks such as de novo assembly, high-throughput sequencing (HTS) read alignment, pan-genome analysis, metagenomics analysis, HTS read correction, etc. With the rapid development of HTS data and ever-increasing number of assembled genomes, there is a high demand to construct de Bruijn graph for sequences up to Tera-base-pair level. It is non-trivial since the size of the graph to be constructed could be very large and each graph consists of hundreds of billions of vertices and edges. Current existing approaches may have unaffordable memory footprints to handle such a large de Bruijn graph. Moreover, it also requires the construction approach to handle very large dataset efficiently, even if in a relatively small RAM space.ResultsWe propose a lightweight parallel de Bruijn graph construction approach, de Bruijn Graph Constructor in Scalable Memory (deGSM). The main idea of deGSM is to efficiently construct the Bur-rows-Wheeler Transformation (BWT) of the unipaths of de Bruijn graph in constant RAM space and transform the BWT into the original unitigs. It is mainly implemented by a fast parallel external sorting of k-mers, which allows only a part of k-mers kept in RAM by a novel organization of the k-mers. The experimental results demonstrate that, just with a commonly used machine, deGSM is able to handle very large genome sequence(s), e.g., the contigs (305 Gbp) and scaffolds (1.1 Tbp) recorded in Gen-Bank database and Picea abies HTS dataset (9.7 Tbp). Moreover, deGSM also has faster or comparable construction speed compared with state-of-the-art approaches. With its high scalability and efficiency, deGSM has enormous potentials in many large scale genomics studies.Availabilityhttps://github.com/hitbc/[email protected] (YW) and [email protected] (BL)Supplementary informationSupplementary data are available online.


2018 ◽  
Vol 35 (13) ◽  
pp. 2326-2328 ◽  
Author(s):  
Tobias Jakobi ◽  
Alexey Uvarovskii ◽  
Christoph Dieterich

Abstract Motivation Circular RNAs (circRNAs) originate through back-splicing events from linear primary transcripts, are resistant to exonucleases, are not polyadenylated and have been shown to be highly specific for cell type and developmental stage. CircRNA detection starts from high-throughput sequencing data and is a multi-stage bioinformatics process yielding sets of potential circRNA candidates that require further analyses. While a number of tools for the prediction process already exist, publicly available analysis tools for further characterization are rare. Our work provides researchers with a harmonized workflow that covers different stages of in silico circRNA analyses, from prediction to first functional insights. Results Here, we present circtools, a modular, Python-based framework for computational circRNA analyses. The software includes modules for circRNA detection, internal sequence reconstruction, quality checking, statistical testing, screening for enrichment of RBP binding sites, differential exon RNase R resistance and circRNA-specific primer design. circtools supports researchers with visualization options and data export into commonly used formats. Availability and implementation circtools is available via https://github.com/dieterich-lab/circtools and http://circ.tools under GPLv3.0. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document