scholarly journals Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data

2010 ◽  
Vol 26 (17) ◽  
pp. 2101-2108 ◽  
Author(s):  
Jiří Macas ◽  
Pavel Neumann ◽  
Petr Novák ◽  
Jiming Jiang

Abstract Motivation: Satellite DNA makes up significant portion of many eukaryotic genomes, yet it is relatively poorly characterized even in extensively sequenced species. This is, in part, due to methodological limitations of traditional methods of satellite repeat analysis, which are based on multiple alignments of monomer sequences. Therefore, we employed an alternative, alignment-free, approach utilizing k-mer frequency statistics, which is in principle more suitable for analyzing large sets of satellite repeat data, including sequence reads from next generation sequencing technologies. Results: k-mer frequency spectra were determined for two sets of rice centromeric satellite CentO sequences, including 454 reads from ChIP-sequencing of CENH3-bound DNA (7.6 Mb) and the whole genome Sanger sequencing reads (5.8 Mb). k-mer frequencies were used to identify the most conserved sequence regions and to reconstruct consensus sequences of complete monomers. Reconstructed consensus sequences as well as the assessment of overall divergence of k-mer spectra revealed high similarity of the two datasets, suggesting that CentO sequences associated with functional centromeres (CENH3-bound) do not significantly differ from the total population of CentO, which includes both centromeric and pericentromeric repeat arrays. On the other hand, considerable differences were revealed when these methods were used for comparison of CentO populations between individual chromosomes of the rice genome assembly, demonstrating preferential sequence homogenization of the clusters within the same chromosome. k-mer frequencies were also successfully used to identify and characterize smRNAs derived from CentO repeats. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (12) ◽  
pp. 3632-3636 ◽  
Author(s):  
Weibo Zheng ◽  
Jing Chen ◽  
Thomas G Doak ◽  
Weibo Song ◽  
Ying Yan

Abstract Motivation Programmed DNA elimination (PDE) plays a crucial role in the transitions between germline and somatic genomes in diverse organisms ranging from unicellular ciliates to multicellular nematodes. However, software specific for the detection of DNA splicing events is scarce. In this paper, we describe Accurate Deletion Finder (ADFinder), an efficient detector of PDEs using high-throughput sequencing data. ADFinder can predict PDEs with relatively low sequencing coverage, detect multiple alternative splicing forms in the same genomic location and calculate the frequency for each splicing event. This software will facilitate research of PDEs and all down-stream analyses. Results By analyzing genome-wide DNA splicing events in two micronuclear genomes of Oxytricha trifallax and Tetrahymena thermophila, we prove that ADFinder is effective in predicting large scale PDEs. Availability and implementation The source codes and manual of ADFinder are available in our GitHub website: https://github.com/weibozheng/ADFinder. Supplementary information Supplementary data are available at Bioinformatics online.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S10) ◽  
Author(s):  
Tao Tang ◽  
Yuansheng Liu ◽  
Buzhong Zhang ◽  
Benyue Su ◽  
Jinyan Li

Abstract Background The rapid development of Next-Generation Sequencing technologies enables sequencing genomes with low cost. The dramatically increasing amount of sequencing data raised crucial needs for efficient compression algorithms. Reference-based compression algorithms have exhibited outstanding performance on compressing single genomes. However, for the more challenging and more useful problem of compressing a large collection of n genomes, straightforward application of these reference-based algorithms suffers a series of issues such as difficult reference selection and remarkable performance variation. Results We propose an efficient clustering-based reference selection algorithm for reference-based compression within separate clusters of the n genomes. This method clusters the genomes into subsets of highly similar genomes using MinHash sketch distance, and uses the centroid sequence of each cluster as the reference genome for an outstanding reference-based compression of the remaining genomes in each cluster. A final reference is then selected from these reference genomes for the compression of the remaining reference genomes. Our method significantly improved the performance of the-state-of-art compression algorithms on large-scale human and rice genome databases containing thousands of genome sequences. The compression ratio gain can reach up to 20-30% in most cases for the datasets from NCBI, the 1000 Human Genomes Project and the 3000 Rice Genomes Project. The best improvement boosts the performance from 351.74 compression folds to 443.51 folds. Conclusions The compression ratio of reference-based compression on large scale genome datasets can be improved via reference selection by applying appropriate data preprocessing and clustering methods. Our algorithm provides an efficient way to compress large genome database.


2020 ◽  
Vol 36 (12) ◽  
pp. 3874-3876 ◽  
Author(s):  
Sergio Arredondo-Alonso ◽  
Martin Bootsma ◽  
Yaïr Hein ◽  
Malbert R C Rogers ◽  
Jukka Corander ◽  
...  

Abstract Summary Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data. Availability and implementation Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Liam F Spurr ◽  
Mehdi Touat ◽  
Alison M Taylor ◽  
Adrian M Dubuc ◽  
Juliann Shih ◽  
...  

Abstract Summary The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. Availability and implementation ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (18) ◽  
pp. 4817-4818 ◽  
Author(s):  
Gregor Sturm ◽  
Tamas Szabo ◽  
Georgios Fotakis ◽  
Marlene Haider ◽  
Dietmar Rieder ◽  
...  

Abstract Summary Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data. Availability and implementation Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Fatemeh Almodaresi ◽  
Jamshed Khan ◽  
Sergey Madaminov ◽  
Prashant Pandey ◽  
Michael Ferdman ◽  
...  

AbstractMotivationIn the past few years, researchers have proposed numerous indexing schemes for searching large databases of raw sequencing experiments. Most of these proposed indexes are approximate (i.e. with one-sided errors) in order to save space. Recently, researchers have published exact indexes—Mantis, VariMerge, and Bifrost—that can serve as colored de Bruijn graph representations in addition to serving as k-mer indexes. This new type of index is promising because it has the potential to support more complex analyses than simple searches. However, in order to be useful as indexes for large and growing repositories of raw sequencing data, they must scale to thousands of experiments and support efficient insertion of new data.ResultsIn this paper, we show how to build a scalable and updatable exact sequence-search index. Specifically, we extend Mantis using the Bentley-Saxe transformation to support efficient updates. We demonstrate Mantis’s scalability by constructing an index of ≈ 40K samples from SRA by adding samples one at a time to an initial index of 10K samples.Compared to VariMerge and Bifrost, Mantis is more efficient in terms of index-construction time and memory, query time and memory, and index size. In our benchmarks, VariMerge and Bifrost scaled to only 5K and 80 samples, respectively, while Mantis scaled to more than 39K samples. Queries were over 24× faster in Mantis than in Bifrost (VariMerge does not immediately support general search queries we require). Mantis indexes were about 2.5× smaller than Bifrost’s indexes and about half as big as VariMerge’s indexes.AvailabilityThe updatable Mantis implementation is available at https://github.com/splatlab/mantis/tree/[email protected] informationSupplementary data are available online.


2009 ◽  
Vol 91 (4) ◽  
pp. 293-303 ◽  
Author(s):  
LEEYOUNG PARK

SummaryThis study aims to comprehensively examine the mutation rates of one base for another in human gene loci. In contrast to most previous efforts based on divergence data from untranscribed regions, the present study employs the basic theory of the reversible recurrent mutation model using large-scale, high-quality re-sequencing data from public databases of gene loci. Population mutation parameters (4Nν and 4Nμ) are obtained for each pair of base substitutions. The estimated parameters show good strand reversal symmetry, supporting the existence of mutation-drift equilibrium. Analysis of specific gene regions including mRNA, coding sequence (CDS), 5′-untranslated region (5′-UTRs), 3′-UTR and intron shows that there are clear differences in the mutation rates of each base for another depending on the location of the base in question. Results from analyses that take the adjacent bases into account exhibit excellent strand reversal symmetry, confirming that the identity of an adjacent base influences mutation rates. The CpG to TpG (or CpG to CpA) substitution is found at a rate approximately seven-fold higher than the reverse transition in intron regions due to cytosine deamination, but the effect is strongly reduced in mRNA regions and almost entirely lost in 5′-UTRs. However, from the overall increased transitions in sites other than CpGs and the proportion of CpGs in the total sequence, CpG methylation is not the main factor responsible for the increased rate of transitions as compared with transversions. In this report, after adjusting average mutation rates to the sequence compositions, no substitution bias is found between A+T and C+G, indicating base composition equilibrium in human gene loci. Population differences are also identified between groups of people of African and European descent, presumably due to past population histories. By applying the basic theory of population genetics to re-sequenced data, this study contributes new, detailed information regarding mutations in human gene regions.


2020 ◽  
Vol 36 (11) ◽  
pp. 3299-3306
Author(s):  
Ziwei Chen ◽  
Fuzhou Gong ◽  
Lin Wan ◽  
Liang Ma

Abstract Motivation Single-cell sequencing (SCS) data provide unprecedented insights into intratumoral heterogeneity. With SCS, we can better characterize clonal genotypes and reconstruct phylogenetic relationships of tumor cells/clones. However, SCS data are often error-prone, making their computational analysis challenging. Results To infer the clonal evolution in tumor from the error-prone SCS data, we developed an efficient computational framework, termed RobustClone. It recovers the true genotypes of subclones based on the extended robust principal component analysis, a low-rank matrix decomposition method, and reconstructs the subclonal evolutionary tree. RobustClone is a model-free method, which can be applied to both single-cell single nucleotide variation (scSNV) and single-cell copy-number variation (scCNV) data. It is efficient and scalable to large-scale datasets. We conducted a set of systematic evaluations on simulated datasets and demonstrated that RobustClone outperforms state-of-the-art methods in large-scale data both in accuracy and efficiency. We further validated RobustClone on two scSNV and two scCNV datasets and demonstrated that RobustClone could recover genotype matrix and infer the subclonal evolution tree accurately under various scenarios. In particular, RobustClone revealed the spatial progression patterns of subclonal evolution on the large-scale 10X Genomics scCNV breast cancer dataset. Availability and implementation RobustClone software is available at https://github.com/ucasdp/RobustClone. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
María Bogaerts-Márquez ◽  
Maite G Barrón ◽  
Anna-Sophie Fiston-Lavier ◽  
Pol Vendrell-Mir ◽  
Raúl Castanera ◽  
...  

Abstract Motivation Transposable elements (TEs) constitute a significant proportion of the majority of genomes sequenced to date. TEs are responsible for a considerable fraction of the genetic variation within and among species. Accurate genotyping of TEs in genomes is therefore crucial for a complete identification of the genetic differences among individuals, populations and species. Results In this work, we present a new version of T-lex, a computational pipeline that accurately genotypes and estimates the population frequencies of reference TE insertions using short-read high-throughput sequencing data. In this new version, we have re-designed the T-lex algorithm to integrate the BWA-MEM short-read aligner, which is one of the most accurate short-read mappers and can be launched on longer short-reads (e.g. reads >150 bp). We have added new filtering steps to increase the accuracy of the genotyping, and new parameters that allow the user to control both the minimum and maximum number of reads, and the minimum number of strains to genotype a TE insertion. We also showed for the first time that T-lex3 provides accurate TE calls in a plant genome. Availability and implementation To test the accuracy of T-lex3, we called 1630 individual TE insertions in Drosophila melanogaster, 1600 individual TE insertions in humans, and 3067 individual TE insertions in the rice genome. We showed that this new version of T-lex is a broadly applicable and accurate tool for genotyping and estimating TE frequencies in organisms with different genome sizes and different TE contents. T-lex3 is available at Github: https://github.com/GonzalezLab/T-lex3. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Yang Young Lu ◽  
Jiaxing Bai ◽  
Yiwen Wang ◽  
Ying Wang ◽  
Fengzhu Sun

Abstract Motivation Rapid developments in sequencing technologies have boosted generating high volumes of sequence data. To archive and analyze those data, one primary step is sequence comparison. Alignment-free sequence comparison based on k-mer frequencies offers a computationally efficient solution, yet in practice, the k-mer frequency vectors for large k of practical interest lead to excessive memory and storage consumption. Results We report CRAFT, a general genomic/metagenomic search engine to learn compact representations of sequences and perform fast comparison between DNA sequences. Specifically, given genome or high throughput sequencing data as input, CRAFT maps the data into a much smaller embedding space and locates the best matching genome in the archived massive sequence repositories. With 102−104-fold reduction of storage space, CRAFT performs fast query for gigabytes of data within seconds or minutes, achieving comparable performance as six state-of-the-art alignment-free measures. Availability and implementation CRAFT offers a user-friendly graphical user interface with one-click installation on Windows and Linux operating systems, freely available at https://github.com/jiaxingbai/CRAFT. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document