River capture or ancestral polymorphism: an empirical genetic test in a freshwater fish using approximate Bayesian computation

2020 ◽  
Vol 131 (3) ◽  
pp. 575-584
Author(s):  
Mateus S Souza ◽  
Andréa T Thomaz ◽  
Nelson J R Fagundes

Abstract A headwater or river capture is a phenomenon commonly invoked to explain the absence of reciprocal monophyly of genetic lineages among isolated hydrographic basins in freshwater fish. Under the assumption of river capture, a secondary contact between populations previously isolated in different basins explains the observed genetic pattern. However, the absence of reciprocal monophyly could also arise under population isolation through the retention of ancestral of polymorphisms. Here, we applied an approximate Bayesian computation (ABC) framework for estimating the relative probability of scenarios with and without secondary contact. We used Cnesterodon decemmaculatus as a study model because of the multiple possible cases of river capture and the demographic parameters estimated in a previous mitochondrial DNA study that are useful for simulating scenarios to test both hypotheses using the ABC framework. Our results showed that, in general, mitochondrial DNA is useful for distinguishing between these alternative demographic scenarios with reasonable confidence, but in extreme cases (e.g. recent divergence or large population size) there is no power to discriminate between scenarios. Testing hypotheses of drainage rearrangement under a statistically rigorous framework is fundamental for understanding the evolution of freshwater fish fauna as a complement to, or in the absence of, geological evidence.

2018 ◽  
Author(s):  
Justin C Bagley ◽  
Michael J Hickerson ◽  
Jerald B Johnson

Most Neotropical frog and freshwater fish species sampled to date show phylogeographic breaks along the Pacific coast of the Isthmus of Panama, with lineages in Costa Rica and western Panama isolated from central Panama. We examine temporal patterns of diversification of taxa across this ‘western Panama isthmus’ (WPI) break to test hypotheses about the origin of species geographical distributions and genetic structuring in this region. We tested for synchronous diversification of four codistributed frog taxon-pairs and three fish taxon-pairs sharing the WPI break using hierarchical approximate Bayesian computation with model averaging based on mitochondrial DNA sequences. We also estimated lineage divergence times using full-Bayesian models. Several of our results supported synchronous divergences within the frog and freshwater fish assemblages; however, Bayes factor support was equivocal for or against synchronous or asynchronous diversification. Nevertheless, we infer that frog populations were likely isolated by one or multiple Pliocene–Pleistocene events more recently than predicted by previous models, while fish genetic diversity was structured by Pleistocene events. By integrating our results with external information from geology and elevational sea level modeling, we discuss the implications of our findings for understanding the biogeographical scenario of the diversification of Panamanian frogs and fishes. Consistent with the ‘Bermingham/Martin model’ (Mol. Ecol. 1998, 7: 499-517), we conclude that the regional fish assemblage was fractured by processes shaping isthmian landscapes during the Pleistocene glaciations, including drainage basin isolation during lowered sea levels.


Diversity ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 120 ◽  
Author(s):  
Justin Bagley ◽  
Michael Hickerson ◽  
Jerald Johnson

Most Neotropical frog and freshwater fish species sampled to date show phylogeographic breaks along the Pacific coast of the Isthmus of Panama, with lineages in Costa Rica and western Panama isolated from central Panama. We examine temporal patterns of diversification of taxa across this ‘western Panama isthmus’ (WPI) break to test hypotheses about the origin of species geographical distributions and genetic structuring in this region. We tested for synchronous diversification of four codistributed frog taxon-pairs and three fish taxon-pairs sharing the WPI break using hierarchical approximate Bayesian computation with model averaging based on mitochondrial DNA sequences. We also estimated lineage divergence times using full-Bayesian models. Several of our results supported synchronous divergences within the frog and freshwater fish assemblages; however, Bayes factor support was equivocal for or against synchronous or asynchronous diversification. Nevertheless, we infer that frog populations were likely isolated by one or multiple Pliocene–Pleistocene events more recently than predicted by previous models, while fish genetic diversity was structured by Pleistocene events. By integrating our results with external information from geology and elevational sea level modeling, we discuss the implications of our findings for understanding the biogeographical scenario of the diversification of Panamanian frogs and fishes. Consistent with the ‘Bermingham/Martin model’ (Molecular Ecology 1998, 7, 499–517), we conclude that the regional fish assemblage was fractured by processes shaping isthmian landscapes during the Pleistocene glaciations, including drainage basin isolation during lowered sea levels.


2021 ◽  
Author(s):  
Zheng Li ◽  
Jie Zhou ◽  
Minzhi Gao ◽  
Wei Liang ◽  
Lu Dong

Background: Understanding speciation has long been a fundamental goal of evolutionary biology. It is widely accepted that speciation requires an interruption of gene flow to generate strong reproductive isolation between species, in which sexual selection may play an important role by generating and maintaining sexual dimorphism. The mechanism of how sexual selection operated in speciation with gene flow remains an open question and the subject of many research. Two species in genus Chrysolophus, Golden pheasant (C. pictus) and Lady Amherst's pheasant (C. amherstiae), which both exhibit significant plumage dichromatism, are currently parapatric in the southwest China with several hybrid recordings in field. Methods: In this research, we estimated the pattern of gene flow during the speciation of two pheasants using the Approximate Bayesian Computation (ABC) method based on the multiple genes data. With a new assembled de novo genome of Lady Amherst's pheasant and resequencing of widely distributed individuals, we reconstructed the demographic history of the two pheasants by pairwise sequentially Markovian coalescent (PSMC). Results: The results provide clear evidence that the gene flow between the two pheasants were consistent with the prediction of isolation with migration model for allopatric populations, indicating that there was long-term gene flow after the initially divergence (ca. 2.2 million years ago), and further support the secondary contact when included the parapatric populations since around 30 ka ongoing gene flow to now, which might be induced by the population expansion of the Golden pheasant in late Pleistocene. Conclusions: The results of the study support the scenario of speciation between Golden pheasant (C. pictus) and Lady Amherst's pheasant (C. amherstiae) with cycles of mixing-isolation-mixing due to the dynamics of natural selection and sexual selection in late Pleistocene that provide a good research system as evolutionary model to test reinforcement selection in speciation. Keywords: Golden pheasant (Chrysolophus pictus), Lady Amherst's pheasant (Chrysolophus amherstiae), speciation, gene flow, Approximate Bayesian Computation (ABC), Pairwise Sequentially Markovian coalescent (PSMC).


Author(s):  
Justin C Bagley ◽  
Michael J Hickerson ◽  
Jerald B Johnson

Most Neotropical frog and freshwater fish species sampled to date show phylogeographic breaks along the Pacific coast of the Isthmus of Panama, with lineages in Costa Rica and western Panama isolated from central Panama. We examine temporal patterns of diversification of taxa across this ‘western Panama isthmus’ (WPI) break to test hypotheses about the origin of species geographical distributions and genetic structuring in this region. We tested for synchronous diversification of four codistributed frog taxon-pairs and three fish taxon-pairs sharing the WPI break using hierarchical approximate Bayesian computation with model averaging based on mitochondrial DNA sequences. We also estimated lineage divergence times using full-Bayesian models. Several of our results supported synchronous divergences within the frog and freshwater fish assemblages; however, Bayes factor support was equivocal for or against synchronous or asynchronous diversification. Nevertheless, we infer that frog populations were likely isolated by one or multiple Pliocene–Pleistocene events more recently than predicted by previous models, while fish genetic diversity was structured by Pleistocene events. By integrating our results with external information from geology and elevational sea level modeling, we discuss the implications of our findings for understanding the biogeographical scenario of the diversification of Panamanian frogs and fishes. Consistent with the ‘Bermingham/Martin model’ (Mol. Ecol. 1998, 7: 499-517), we conclude that the regional fish assemblage was fractured by processes shaping isthmian landscapes during the Pleistocene glaciations, including drainage basin isolation during lowered sea levels.


Author(s):  
Cecilia Viscardi ◽  
Michele Boreale ◽  
Fabio Corradi

AbstractWe consider the problem of sample degeneracy in Approximate Bayesian Computation. It arises when proposed values of the parameters, once given as input to the generative model, rarely lead to simulations resembling the observed data and are hence discarded. Such “poor” parameter proposals do not contribute at all to the representation of the parameter’s posterior distribution. This leads to a very large number of required simulations and/or a waste of computational resources, as well as to distortions in the computed posterior distribution. To mitigate this problem, we propose an algorithm, referred to as the Large Deviations Weighted Approximate Bayesian Computation algorithm, where, via Sanov’s Theorem, strictly positive weights are computed for all proposed parameters, thus avoiding the rejection step altogether. In order to derive a computable asymptotic approximation from Sanov’s result, we adopt the information theoretic “method of types” formulation of the method of Large Deviations, thus restricting our attention to models for i.i.d. discrete random variables. Finally, we experimentally evaluate our method through a proof-of-concept implementation.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Jason D. Christopher ◽  
Olga A. Doronina ◽  
Dan Petrykowski ◽  
Torrey R. S. Hayden ◽  
Caelan Lapointe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document