scholarly journals A method for the efficient and selective identification of 5-hydroxymethyluracil in genomic DNA

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Whitney Bullard ◽  
Rudo Kieft ◽  
Robert Sabatini

Recently, 5-hydroxymethyluracil (5hmU) was identified in mammalian genomic DNA as an oxidative product of thymine by the ten-eleven translocation (TET) proteins. While the biological role of this modification remains unclear, identifying its genomic location will assist in elucidating function. Here we present a rapid and robust method to selectively tag and enrich genomic regions containing 5hmU. This method involves the selective glucosylation of 5hmU residues by the base J glucosyltransferase from trypanosomes creating glucosylhydroxymethyluracil (base J). The base J can then be efficiently and selectively pulled down by antibodies against base J or by J-binding protein 1. DNA that is enriched is suitable for analysis by quantitative PCR or sequencing. We utilized this tagging reaction to provide proof of concept for the enrichment of 5hmU containing DNA from a pool that contains modified and unmodified DNA. Furthermore, we demonstrate that the base J pull-down assay identifies 5hmU at specific regions of the trypanosome genome involved in transcriptional repression. The method described here will allow for a greater understanding of the functional role and dynamics of 5hmU in biology.

2009 ◽  
Vol 221 (03) ◽  
Author(s):  
B Steiger ◽  
I Leuschner ◽  
D Denkhaus ◽  
D von Schweinitz ◽  
T Pietsch
Keyword(s):  

2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document