scholarly journals Cholinergic and inflammatory phenotypes in transgenic tau mouse models of Alzheimer’s disease and frontotemporal lobar degeneration

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna L Cranston ◽  
Adrianna Wysocka ◽  
Marta Steczkowska ◽  
Maciej Zadrożny ◽  
Ewelina Palasz ◽  
...  

Abstract An early and sizeable loss of basal forebrain cholinergic neurons is a well-characterized feature associated with measurable deficits in spatial learning and cognitive impairment in patients with Alzheimer’s disease. In addition, pro-inflammatory glial cells such as astrocytes and microglia may play a key role in the neurodegenerative cascade of Alzheimer’s disease and tauopathies. We recently presented two mouse models: Line 1, expressing the truncated tau fragment identified as the core of the Alzheimer’s paired helical filament, and Line 66, expressing full-length human tau carrying a double mutation (P301S and G335D). Line 1 mice have a pathology that is akin to Alzheimer’s, whilst Line 66 resembles frontotemporal lobar degeneration. However, their cholinergic and inflammatory phenotypes remain elusive. We performed histological evaluation of choline acetyltransferase, acetylcholinesterase, p75 neurotrophin receptor, microglial ionized calcium binding adaptor molecule 1 and astrocytic glial fibrillary acidic protein in the basal forebrain, hippocampus and cortex of these models. A significant lowering of choline acetyltransferase-positive neurons and p75-positive neurons in the basal forebrain of Line 1 at 3, 6 and 9 months was observed in two independent studies, alongside a significant decrease in acetylcholinesterase staining in the cortex and hippocampus. The reductions in choline acetyltransferase positivity varied between 30% and 50% at an age when Line 1 mice show spatial learning impairments. Furthermore, an increase in microglial ionized calcium binding adaptor molecule 1 staining was observed in the basal forebrain, hippocampus and entorhinal cortex of Line 1 at 6 months. Line 66 mice displayed an intact cholinergic basal forebrain, and no difference in p75-positive neurons at 3 or 9 months. In addition, Line 66 exhibited significant microglial ionized calcium binding adaptor molecule 1 increase in the basal forebrain and hippocampus, suggesting a prominent neuroinflammatory profile. Increased concentrations of microglial interleukin-1β and astrocytic complement 3 were also seen in the hippocampus of both Line 1 and Line 66. The cholinergic deficit in Line 1 mice confirms the Alzheimer’s disease-like phenotype in Line 1 mice, whilst Line 66 revealed no measurable change in total cholinergic expression, a phenotypic trait of frontotemporal lobar degeneration. These two transgenic lines are therefore suitable for discriminating mechanistic underpinnings between the Alzheimer’s and frontotemporal lobar degeneration-like phenotypes of these mice.

1998 ◽  
Vol 18 (5) ◽  
pp. 476-490 ◽  
Author(s):  
Claude Le Mestric ◽  
Chantal Chavoix ◽  
Françoise Chapon ◽  
Florence Mézenge ◽  
Jacques Epelbaum ◽  
...  

Neuronal loss in the basal forebrain cholinergic structures and frontotemporal hypometabolism are two characteristics of Alzheimer's disease, but their interrelations still are unsettled. We previously reported that unilateral electrolytic lesions of the nucleus basalis of Meynert in baboons were associated with marked but transient cortical hypometabolism. The current study reevaluates this issue using improved methodology. Baboons with unilateral ibotenic acid lesion of all three basal forebrain cholinergic structures (IBO group) were compared with sham-operated animals. The CMRglc was measured with high-resolution coronal positron emission tomography scanning coregistered with magnetic resonance imaging, before surgery and serially between 4 and 72 days afterward. Severe histologic basal forebrain damage and a decrease of more than 50% in cortical choline acetyltransferase activity were found postmortem in the IBO group. Transient and nonspecific hypometabolism was found in the needle track area in both groups. Compared with the sham-operated group, only marginally significant decreases in ipsilateral–contralateral CMRglc ratios were observed in the IBO group, affecting only 1 of 14 neocortical areas investigated (the anterior temporal cortex) at a single postsurgical time (day 14), and the posterior hippocampal region at days 14 and 38. Furthermore, there was no consistently significant correlation between ipsilateral–contralateral CMRglc ratios and cortical choline acetyltransferase activity values in any of the four regions analyzed. These results suggest that cholinergic deafferentation play at best a marginal role in the brain hypometabolism observed in Alzheimer's disease.


2014 ◽  
pp. 111-129
Author(s):  
Janet van Eersel ◽  
Fabien Delerue ◽  
Lars M. Ittner ◽  
Yazi D. Ke

2018 ◽  
pp. 187-219 ◽  
Author(s):  
Lars M. Ittner ◽  
Wei S. Lee ◽  
Kristie Stefanoska ◽  
Prita R. Asih ◽  
Yazi D. Ke

ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142092535 ◽  
Author(s):  
Naomi K. Giesers ◽  
Oliver Wirths

The deposition of amyloid-β peptides in the form of extracellular plaques and neuronal degeneration belong to the hallmark features of Alzheimer’s disease (AD). In addition, impaired calcium homeostasis and altered levels in calcium-binding proteins seem to be associated with the disease process. In this study, calretinin- (CR) and parvalbumin- (PV) positive gamma-aminobutyric acid-producing (GABAergic) interneurons were quantified in different hippocampal subfields of 12-month-old wild-type mice, as well as in the transgenic AD mouse models 5XFAD and Tg4-42. While, in comparison with wild-type mice, CR-positive interneurons were mainly reduced in the CA1 and CA2/3 regions in plaque-bearing 5XFAD mice, PV-positive interneurons were reduced in all analyzed subfields including the dentate gyrus. No reduction in CR- and PV-positive interneuron numbers was detected in the non-plaque-forming Tg4-42 mouse, although this model has been previously demonstrated to harbor a massive loss of CA1 pyramidal neurons. These results provide information about hippocampal interneuron numbers in two relevant AD mouse models, suggesting that interneuron loss in this brain region may be related to extracellular amyloid burden.


Sign in / Sign up

Export Citation Format

Share Document