scholarly journals EphB3 interacts with initiator caspases and FHL-2 to activate dependence receptor cell death in oligodendrocytes after brain injury

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Yanina Tsenkina ◽  
Stephen A Tapanes ◽  
Madelen M Díaz ◽  
David J Titus ◽  
Shyam Gajavelli ◽  
...  

Abstract Clinical trials examining neuroprotective strategies after brain injury, including those targeting cell death mechanisms, have been underwhelming. This may be in part due to an incomplete understanding of the signalling mechanisms that induce cell death after traumatic brain injury. The recent identification of a new family of death receptors that initiate pro-cell death signals in the absence of their ligand, called dependence receptors, provides new insight into the factors that contribute to brain injury. Here, we show that blocking the dependence receptor signalling of EphB3 improves oligodendrocyte cell survival in a murine controlled cortical impact injury model, which leads to improved myelin sparing, axonal conductance and behavioural recovery. EphB3 also functions as a cysteine-aspartic protease substrate, where the recruitment of injury-dependent adaptor protein Dral/FHL-2 together with capsase-8 or -9 leads to EphB3 cleavage to initiate cell death signals in murine and human traumatic brain-injured patients, supporting a conserved mechanism of cell death. These pro-apoptotic responses can be blocked via exogenous ephrinB3 ligand administration leading to improved oligodendrocyte survival. In short, our findings identify a novel mechanism of oligodendrocyte cell death in the traumatically injured brain that may reflect an important neuroprotective strategy in patients.

2014 ◽  
Vol 5 (5) ◽  
pp. e1207-e1207 ◽  
Author(s):  
M H Theus ◽  
J Ricard ◽  
S J Glass ◽  
L G Travieso ◽  
D J Liebl

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Juan Carlos Gómora-García ◽  
Cristian Gerónimo-Olvera ◽  
Xochitl Pérez-Martínez ◽  
Lourdes Massieu

AbstractAltered protein homeostasis is associated with neurodegenerative diseases and acute brain injury induced under energy depletion conditions such as ischemia. The accumulation of damaged or unfolded proteins triggers the unfolded protein response (UPR), which can act as a homeostatic response or lead to cell death. However, the factors involved in turning and adaptive response into a cell death mechanism are still not well understood. Several mechanisms leading to brain injury induced by severe hypoglycemia have been described but the contribution of the UPR has been poorly studied. Cell responses triggered during both the hypoglycemia and the glucose reinfusion periods can contribute to neuronal death. Therefore, we have investigated the activation dynamics of the PERK and the IRE1α branches of the UPR and their contribution to neuronal death in a model of glucose deprivation (GD) and glucose reintroduction (GR) in cortical neurons. Results show a rapid activation of the PERK/p-eIF2α/ATF4 pathway leading to protein synthesis inhibition during GD, which contributes to neuronal adaptation, however, sustained blockade of protein synthesis during GR promotes neuronal death. On the other hand, IRE1α activation occurs early during GD due to its interaction with BAK/BAX, while ASK1 is recruited to IRE1α activation complex during GR promoting the nuclear translocation of JNK and the upregulation of Chop. Most importantly, results show that IRE1α RNase activity towards its splicing target Xbp1 mRNA occurs late after GR, precluding a homeostatic role. Instead, IRE1α activity during GR drives neuronal death by positively regulating ASK1/JNK activity through the degradation of 14-3-3 θ mRNA, a negative regulator of ASK and an adaptor protein highly expressed in brain, implicated in neuroprotection. Collectively, results describe a novel regulatory mechanism of cell death in neurons, triggered by the downregulation of 14-3-3 θ mRNA induced by the IRE1α branch of the UPR.


2010 ◽  
Vol 26 (3) ◽  
pp. 232-240 ◽  
Author(s):  
Li-Zhi Hong ◽  
Xiao-Yuan Zhao ◽  
Hui-Ling Zhang

2006 ◽  
Vol 14 (7S_Part_20) ◽  
pp. P1083-P1083
Author(s):  
Daniela Lecca ◽  
Miaad Bader ◽  
David Tweedie ◽  
Debomoy K. Lahiri ◽  
Robert E. Becker ◽  
...  

2005 ◽  
Vol 25 (7) ◽  
pp. 899-910 ◽  
Author(s):  
Yasuhiko Matsumori ◽  
Shwuhuey M Hong ◽  
Koji Aoyama ◽  
Yang Fan ◽  
Takamasa Kayama ◽  
...  

Apoptosis is implicated in neonatal hypoxic/ischemic (H/I) brain injury among various forms of cell death. Here we investigate whether overexpression of heat shock protein (Hsp) 70, an antiapoptotic protein, protects the neonatal brain from H/I injury and the pathways involved in the protection. Postnatal day 7 (P7) transgenic mice overexpressing rat Hsp70 (Tg) and their wild-type littermates (Wt) underwent unilateral common carotid artery ligation followed by 30 mins exposure to 8% O2. Significant neuroprotection was observed in Tg versus Wt mice on both P12 and P21, correlating with a high level of constitutive but not inducible Hsp70 in the Tg. More prominent injury was observed in Wt and Tg mice on P21, suggesting its continuous evolution after P12. Western blot analysis showed that translocation of cytochrome c, but not the second mitochondria-derived activator of caspase (Smac)/DIABLO and apoptosis-inducing factor (AIF), from mitochondria into cytosol was significantly reduced in Tg 24 h after H/I compared with Wt mice. Coimmunoprecipitation detected more Hsp70 bound to AIF in Tg than Wt mice 24 h after H/I, inversely correlating with the amount of nuclear, but not cytosolic, AIF translocation. Our results suggest that interaction between Hsp70 and AIF might have reduced downstream events leading to cell death, including the reduction of nuclear AIF translocation in the neonatal brains of Hsp70 Tg mice after H/I.


Sign in / Sign up

Export Citation Format

Share Document