Differential oxidative stress induced by two different types of skin tumor promoters, benzoyl peroxide and 12-O-tetradecanoylphorbol-13-acetate

1991 ◽  
Vol 12 (11) ◽  
pp. 2047-2052 ◽  
Author(s):  
Hebe A. Durán ◽  
Beatriz M. de Rey
2019 ◽  
Vol 57 (1) ◽  
pp. 192-199
Author(s):  
Mayumi Kawabe ◽  
Koji Urano ◽  
Mayuko Suguro ◽  
Tomomi Hara ◽  
Yasushi Kageyama ◽  
...  

After initiation with 7,12-dimethylbenz[a]anthracene (DMBA), the promoting potential of 12- O-tetradecanoylphorbol-13-acetate (TPA) on skin tumor development can be detected by an ultra-short-term skin carcinogenicity bioassay using Tg-rasH2 mice. In the present study, 10 chemicals were assessed using this ultra-short-term bioassay as a first step to validate this practical and easy-to-use skin carcinogenicity bioassay. These chemicals belonged to 4 categories: dermal vehicles (acetone, 99.5% ethanol, anhydrous ethanol, and Vaseline), skin noncarcinogens (oleic acid diethanolamine condensate, benzethonium chloride, and diisopropylcarbodiimide), skin tumor promoters (TPA and benzoyl peroxide), and a skin carcinogen (4-vinyl-1-cyclohexene diepoxide). In a first study, DMBA was used as the initiator at a dose of 50 μg according to previous data, but skin tumors were observed in the no-treatment and vehicle groups. Therefore, the dose of DMBA for skin tumor initiation was reevaluated using 12.5 or 25 μg, with 12.5 μg found to be sufficient for initiation activity. In the ultra-short-term assay, the vehicles and skin noncarcinogens were negative while the skin tumor promoters and the skin carcinogen were positive. The detection of skin tumor promotion and carcinogenicity was feasible in only 8 weeks. In conclusion, this carcinogenicity bioassay may represent a useful tool for the assessment of the carcinogenicity potential of topically applied chemicals.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Dehai Xian ◽  
Jing Song ◽  
Lingyu Yang ◽  
Xia Xiong ◽  
Rui Lai ◽  
...  

Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin, thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis, increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zofia Nizioł-Łukaszewska ◽  
Dominika Furman-Toczek ◽  
Tomasz Bujak ◽  
Tomasz Wasilewski ◽  
Zofia Hordyjewicz-Baran

The work attempts to obtain a multifunctional plant extract derived from Moringa tree leaves. Obtained results indicate a strong antioxidant potential of the tested extracts. It was shown that Moringa oleifera leaf extract is a rich source of flavonoid and phenolic compounds. Furthermore, it shows a strong antioxidant activity by scavenging free radicals. In vitro toxicity studies showed that the tested extracts in concentrations up to 5% showed a positive effect on cell proliferation and metabolism and may contribute to the reduction of oxidative stress in cells. It was noted that the tested model formulation of cosmetic (1% SCS) with the addition of different types of extracts might contribute to the reduction of skin irritation and improve the safety of the product.


2010 ◽  
Vol 44 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Inga Karu ◽  
Günter Taal ◽  
Kersti Zilmer ◽  
Chris Pruunsild ◽  
Joel Starkopf ◽  
...  

1991 ◽  
Vol 12 (6) ◽  
pp. 1023-1028 ◽  
Author(s):  
Mary Locniskar ◽  
Martha A. Belury ◽  
Adam G. Cumberland ◽  
Kelly E. Patrick ◽  
Susan M. Fischer

2007 ◽  
Vol 5 (12) ◽  
pp. 1342-1352 ◽  
Author(s):  
J. Lu ◽  
O. Rho ◽  
E. Wilker ◽  
L. Beltran ◽  
J. DiGiovanni

2021 ◽  
Author(s):  
◽  
Anne Wietheger

<p>Coral bleaching, the loss of symbiotic dinoflagellate algae (genus Symbiodinium) and/or photosynthetic algal pigments from their coral host has become a regular occurrence in the last few decades due to increasing seawater temperatures. A key consideration in bleaching susceptibility is the symbiotic alga‘s physiology and its capacity to deal with abiotic stress; oxidative stress is of particular interest given that this can arise from thermally induced photosynthetic dysfunction. The aim of this study was to compare the effects of thermal and oxidative stress on the photosynthetic performance of a range of Symbiodinium clades and types (i.e. sub-clades) in different states of symbiosis (in hospite, freshly isolated and in culture). Whether the responses to these two stressors are related was investigated; in particular, it was hypothesised that more thermally sensitive types would be more sensitive to oxidative stress. Furthermore, the study aimed to elucidate the role of antioxidants in the observed stress responses. The specific objectives were 1) to establish whether different types of cultured Symbiodinium have dissimilar sensitivities to oxidative stress, induced by hydrogen peroxide (H₂O₂), and whether these are related to their thermal sensitivities; 2) measure the activity and relative amounts of specific reactive oxygen species (ROS) in different types of cultured Symbiodinium in response to thermal and oxidative stress induced by H₂O₂; 3) measure total antioxidant activity in different cultured Symbiodinium types when under oxidative stress; and 4) compare and contrast the responses of different Symbiodinium types to thermal and oxidative stress when in hospite (i.e. in corals) and freshly isolated. In this study, I showed that different Symbiodinium clades and types can differ widely in their responses to both thermal and oxidative stress. This was indicated by photosynthetic performance measured by chlorophyll fluorescence, and differences in the quantity of specific ROS measured via fluorescent probes and flow cytometry. For instance, when adding H₂O₂ to Symbiodinium F1, originally from Hawaii, a decrease of > 99% in maximum quantum yield (Fv/Fm) was displayed, while there was no change in Fv/Fm in the temperate Symbiodinium A1, freshly isolated from the anemone Anthopleura aureoradiata from New Zealand. When comparing the difference in ROS production between the control (26 °C) and a thermal stress treatment (35 °C), type E1 from Okinawa showed no difference in any of the measured ROS. In contrast, a different A1 type from the Gulf of Aqaba displayed an increase in the overall production of ROS, and more specifically in the production of superoxide. Symbiodinium types also displayed differential oxidative stress resistance, which was apparent from their antioxidant activities; in particular, total antioxidant capacity was measured by the ferric reducing antioxidant potential (FRAP) and cellular antioxidant activity (CAA) assays. For example, the aforementioned Symbiodinium types, A1 from the Gulf of Aqaba and F1, increased their antioxidant activities with increasing H₂O₂ concentrations. Meanwhile, type E1 displayed higher baseline levels of antioxidants in comparison to the other two types (A1, F1), which then decreased with increasing H₂O₂. Specific activities of superoxide dismutase and ascorbate peroxidase were also measured. Stress susceptibility appears to be related both to Symbiodinium type and geographic origin, but greater sensitivity to thermal stress did not necessarily correlate with greater susceptibility to oxidative stress. The exact relationship between thermal and oxidative sensitivities in Symbiodinium spp. remains elusive, but it is suggested that different types might follow different strategies for dealing with stress. I propose that some Symbiodinium types rely more on photo-protection when exposed to thermal stress (and hence cope less with oxidative stress), while other types depend more on antioxidants and oxidative stress resistance. The latter might be the better strategy for types from more variable environments, such as higher latitude reefs or intertidal regions, where potentially stressful conditions may be encountered more frequently. This study gives new insights into the variability of stress responses in the genus Symbiodinium, and the complex relationship between thermal and oxidative stress. The implications of these findings for coral bleaching susceptibility and the biogeographic distribution of different Symbiodinium types are discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document